mirror of
https://github.com/bellard/quickjs.git
synced 2024-11-24 14:48:12 +08:00
280 lines
8.9 KiB
JavaScript
280 lines
8.9 KiB
JavaScript
|
"use strict";
|
||
|
|
||
|
function assert(actual, expected, message) {
|
||
|
if (arguments.length == 1)
|
||
|
expected = true;
|
||
|
|
||
|
if (actual === expected)
|
||
|
return;
|
||
|
|
||
|
if (actual !== null && expected !== null
|
||
|
&& typeof actual == 'object' && typeof expected == 'object'
|
||
|
&& actual.toString() === expected.toString())
|
||
|
return;
|
||
|
|
||
|
throw Error("assertion failed: got |" + actual + "|" +
|
||
|
", expected |" + expected + "|" +
|
||
|
(message ? " (" + message + ")" : ""));
|
||
|
}
|
||
|
|
||
|
function assertThrows(err, func)
|
||
|
{
|
||
|
var ex;
|
||
|
ex = false;
|
||
|
try {
|
||
|
func();
|
||
|
} catch(e) {
|
||
|
ex = true;
|
||
|
assert(e instanceof err);
|
||
|
}
|
||
|
assert(ex, true, "exception expected");
|
||
|
}
|
||
|
|
||
|
// load more elaborate version of assert if available
|
||
|
try { __loadScript("test_assert.js"); } catch(e) {}
|
||
|
|
||
|
/*----------------*/
|
||
|
|
||
|
/* a must be < b */
|
||
|
function test_less(a, b)
|
||
|
{
|
||
|
assert(a < b);
|
||
|
assert(!(b < a));
|
||
|
assert(a <= b);
|
||
|
assert(!(b <= a));
|
||
|
assert(b > a);
|
||
|
assert(!(a > b));
|
||
|
assert(b >= a);
|
||
|
assert(!(a >= b));
|
||
|
assert(a != b);
|
||
|
assert(!(a == b));
|
||
|
}
|
||
|
|
||
|
/* a must be numerically equal to b */
|
||
|
function test_eq(a, b)
|
||
|
{
|
||
|
assert(a == b);
|
||
|
assert(b == a);
|
||
|
assert(!(a != b));
|
||
|
assert(!(b != a));
|
||
|
assert(a <= b);
|
||
|
assert(b <= a);
|
||
|
assert(!(a < b));
|
||
|
assert(a >= b);
|
||
|
assert(b >= a);
|
||
|
assert(!(a > b));
|
||
|
}
|
||
|
|
||
|
function test_divrem(div1, a, b, q)
|
||
|
{
|
||
|
var div, divrem, t;
|
||
|
div = BigInt[div1];
|
||
|
divrem = BigInt[div1 + "rem"];
|
||
|
assert(div(a, b) == q);
|
||
|
t = divrem(a, b);
|
||
|
assert(t[0] == q);
|
||
|
assert(a == b * q + t[1]);
|
||
|
}
|
||
|
|
||
|
function test_idiv1(div, a, b, r)
|
||
|
{
|
||
|
test_divrem(div, a, b, r[0]);
|
||
|
test_divrem(div, -a, b, r[1]);
|
||
|
test_divrem(div, a, -b, r[2]);
|
||
|
test_divrem(div, -a, -b, r[3]);
|
||
|
}
|
||
|
|
||
|
/* QuickJS BigInt extensions */
|
||
|
function test_bigint_ext()
|
||
|
{
|
||
|
var r;
|
||
|
assert(BigInt.floorLog2(0n) === -1n);
|
||
|
assert(BigInt.floorLog2(7n) === 2n);
|
||
|
|
||
|
assert(BigInt.sqrt(0xffffffc000000000000000n) === 17592185913343n);
|
||
|
r = BigInt.sqrtrem(0xffffffc000000000000000n);
|
||
|
assert(r[0] === 17592185913343n);
|
||
|
assert(r[1] === 35167191957503n);
|
||
|
|
||
|
test_idiv1("tdiv", 3n, 2n, [1n, -1n, -1n, 1n]);
|
||
|
test_idiv1("fdiv", 3n, 2n, [1n, -2n, -2n, 1n]);
|
||
|
test_idiv1("cdiv", 3n, 2n, [2n, -1n, -1n, 2n]);
|
||
|
test_idiv1("ediv", 3n, 2n, [1n, -2n, -1n, 2n]);
|
||
|
}
|
||
|
|
||
|
function test_bigfloat()
|
||
|
{
|
||
|
var e, a, b, sqrt2;
|
||
|
|
||
|
assert(typeof 1n === "bigint");
|
||
|
assert(typeof 1l === "bigfloat");
|
||
|
assert(1 == 1.0l);
|
||
|
assert(1 !== 1.0l);
|
||
|
|
||
|
test_less(2l, 3l);
|
||
|
test_eq(3l, 3l);
|
||
|
|
||
|
test_less(2, 3l);
|
||
|
test_eq(3, 3l);
|
||
|
|
||
|
test_less(2.1, 3l);
|
||
|
test_eq(Math.sqrt(9), 3l);
|
||
|
|
||
|
test_less(2n, 3l);
|
||
|
test_eq(3n, 3l);
|
||
|
|
||
|
e = new BigFloatEnv(128);
|
||
|
assert(e.prec == 128);
|
||
|
a = BigFloat.sqrt(2l, e);
|
||
|
assert(a === BigFloat.parseFloat("0x1.6a09e667f3bcc908b2fb1366ea957d3e", 0, e));
|
||
|
assert(e.inexact === true);
|
||
|
assert(BigFloat.fpRound(a) == 0x1.6a09e667f3bcc908b2fb1366ea95l);
|
||
|
|
||
|
b = BigFloatEnv.setPrec(BigFloat.sqrt.bind(null, 2), 128);
|
||
|
assert(a === b);
|
||
|
|
||
|
assert(BigFloat.isNaN(BigFloat(NaN)));
|
||
|
assert(BigFloat.isFinite(1l));
|
||
|
assert(!BigFloat.isFinite(1l/0l));
|
||
|
|
||
|
assert(BigFloat.abs(-3l) === 3l);
|
||
|
assert(BigFloat.sign(-3l) === -1l);
|
||
|
|
||
|
assert(BigFloat.exp(0.2l) === 1.2214027581601698339210719946396742l);
|
||
|
assert(BigFloat.log(3l) === 1.0986122886681096913952452369225256l);
|
||
|
assert(BigFloat.pow(2.1l, 1.6l) === 3.277561666451861947162828744873745l);
|
||
|
|
||
|
assert(BigFloat.sin(-1l) === -0.841470984807896506652502321630299l);
|
||
|
assert(BigFloat.cos(1l) === 0.5403023058681397174009366074429766l);
|
||
|
assert(BigFloat.tan(0.1l) === 0.10033467208545054505808004578111154l);
|
||
|
|
||
|
assert(BigFloat.asin(0.3l) === 0.30469265401539750797200296122752915l);
|
||
|
assert(BigFloat.acos(0.4l) === 1.1592794807274085998465837940224159l);
|
||
|
assert(BigFloat.atan(0.7l) === 0.610725964389208616543758876490236l);
|
||
|
assert(BigFloat.atan2(7.1l, -5.1l) === 2.1937053809751415549388104628759813l);
|
||
|
|
||
|
assert(BigFloat.floor(2.5l) === 2l);
|
||
|
assert(BigFloat.ceil(2.5l) === 3l);
|
||
|
assert(BigFloat.trunc(-2.5l) === -2l);
|
||
|
assert(BigFloat.round(2.5l) === 3l);
|
||
|
|
||
|
assert(BigFloat.fmod(3l,2l) === 1l);
|
||
|
assert(BigFloat.remainder(3l,2l) === -1l);
|
||
|
|
||
|
/* string conversion */
|
||
|
assert((1234.125l).toString(), "1234.125");
|
||
|
assert((1234.125l).toFixed(2), "1234.13");
|
||
|
assert((1234.125l).toFixed(2, "down"), "1234.12");
|
||
|
assert((1234.125l).toExponential(), "1.234125e+3");
|
||
|
assert((1234.125l).toExponential(5), "1.23413e+3");
|
||
|
assert((1234.125l).toExponential(5, BigFloatEnv.RNDZ), "1.23412e+3");
|
||
|
assert((1234.125l).toPrecision(6), "1234.13");
|
||
|
assert((1234.125l).toPrecision(6, BigFloatEnv.RNDZ), "1234.12");
|
||
|
|
||
|
/* string conversion with binary base */
|
||
|
assert((0x123.438l).toString(16), "123.438");
|
||
|
assert((0x323.438l).toString(16), "323.438");
|
||
|
assert((0x723.438l).toString(16), "723.438");
|
||
|
assert((0xf23.438l).toString(16), "f23.438");
|
||
|
assert((0x123.438l).toFixed(2, BigFloatEnv.RNDNA, 16), "123.44");
|
||
|
assert((0x323.438l).toFixed(2, BigFloatEnv.RNDNA, 16), "323.44");
|
||
|
assert((0x723.438l).toFixed(2, BigFloatEnv.RNDNA, 16), "723.44");
|
||
|
assert((0xf23.438l).toFixed(2, BigFloatEnv.RNDNA, 16), "f23.44");
|
||
|
assert((0x0.0000438l).toFixed(6, BigFloatEnv.RNDNA, 16), "0.000044");
|
||
|
assert((0x1230000000l).toFixed(1, BigFloatEnv.RNDNA, 16), "1230000000.0");
|
||
|
assert((0x123.438l).toPrecision(5, BigFloatEnv.RNDNA, 16), "123.44");
|
||
|
assert((0x123.438l).toPrecision(5, BigFloatEnv.RNDZ, 16), "123.43");
|
||
|
assert((0x323.438l).toPrecision(5, BigFloatEnv.RNDNA, 16), "323.44");
|
||
|
assert((0x723.438l).toPrecision(5, BigFloatEnv.RNDNA, 16), "723.44");
|
||
|
assert((-0xf23.438l).toPrecision(5, BigFloatEnv.RNDD, 16), "-f23.44");
|
||
|
assert((0x123.438l).toExponential(4, BigFloatEnv.RNDNA, 16), "1.2344p+8");
|
||
|
}
|
||
|
|
||
|
function test_bigdecimal()
|
||
|
{
|
||
|
assert(1m === 1m);
|
||
|
assert(1m !== 2m);
|
||
|
test_less(1m, 2m);
|
||
|
test_eq(2m, 2m);
|
||
|
|
||
|
test_less(1, 2m);
|
||
|
test_eq(2, 2m);
|
||
|
|
||
|
test_less(1.1, 2m);
|
||
|
test_eq(Math.sqrt(4), 2m);
|
||
|
|
||
|
test_less(2n, 3m);
|
||
|
test_eq(3n, 3m);
|
||
|
|
||
|
assert(BigDecimal("1234.1") === 1234.1m);
|
||
|
assert(BigDecimal(" 1234.1") === 1234.1m);
|
||
|
assert(BigDecimal(" 1234.1 ") === 1234.1m);
|
||
|
|
||
|
assert(BigDecimal(0.1) === 0.1m);
|
||
|
assert(BigDecimal(123) === 123m);
|
||
|
assert(BigDecimal(true) === 1m);
|
||
|
|
||
|
assert(123m + 1m === 124m);
|
||
|
assert(123m - 1m === 122m);
|
||
|
|
||
|
assert(3.2m * 3m === 9.6m);
|
||
|
assert(10m / 2m === 5m);
|
||
|
assertThrows(RangeError, () => { 10m / 3m } );
|
||
|
|
||
|
assert(10m % 3m === 1m);
|
||
|
assert(-10m % 3m === -1m);
|
||
|
|
||
|
assert(1234.5m ** 3m === 1881365963.625m);
|
||
|
assertThrows(RangeError, () => { 2m ** 3.1m } );
|
||
|
assertThrows(RangeError, () => { 2m ** -3m } );
|
||
|
|
||
|
assert(BigDecimal.sqrt(2m,
|
||
|
{ roundingMode: "half-even",
|
||
|
maximumSignificantDigits: 4 }) === 1.414m);
|
||
|
assert(BigDecimal.sqrt(101m,
|
||
|
{ roundingMode: "half-even",
|
||
|
maximumFractionDigits: 3 }) === 10.050m);
|
||
|
assert(BigDecimal.sqrt(0.002m,
|
||
|
{ roundingMode: "half-even",
|
||
|
maximumFractionDigits: 3 }) === 0.045m);
|
||
|
|
||
|
assert(BigDecimal.round(3.14159m,
|
||
|
{ roundingMode: "half-even",
|
||
|
maximumFractionDigits: 3 }) === 3.142m);
|
||
|
|
||
|
assert(BigDecimal.add(3.14159m, 0.31212m,
|
||
|
{ roundingMode: "half-even",
|
||
|
maximumFractionDigits: 2 }) === 3.45m);
|
||
|
assert(BigDecimal.sub(3.14159m, 0.31212m,
|
||
|
{ roundingMode: "down",
|
||
|
maximumFractionDigits: 2 }) === 2.82m);
|
||
|
assert(BigDecimal.mul(3.14159m, 0.31212m,
|
||
|
{ roundingMode: "half-even",
|
||
|
maximumFractionDigits: 3 }) === 0.981m);
|
||
|
assert(BigDecimal.mod(3.14159m, 0.31211m,
|
||
|
{ roundingMode: "half-even",
|
||
|
maximumFractionDigits: 4 }) === 0.0205m);
|
||
|
assert(BigDecimal.div(20m, 3m,
|
||
|
{ roundingMode: "half-even",
|
||
|
maximumSignificantDigits: 3 }) === 6.67m);
|
||
|
assert(BigDecimal.div(20m, 3m,
|
||
|
{ roundingMode: "half-even",
|
||
|
maximumFractionDigits: 50 }) ===
|
||
|
6.66666666666666666666666666666666666666666666666667m);
|
||
|
|
||
|
/* string conversion */
|
||
|
assert((1234.125m).toString(), "1234.125");
|
||
|
assert((1234.125m).toFixed(2), "1234.13");
|
||
|
assert((1234.125m).toFixed(2, "down"), "1234.12");
|
||
|
assert((1234.125m).toExponential(), "1.234125e+3");
|
||
|
assert((1234.125m).toExponential(5), "1.23413e+3");
|
||
|
assert((1234.125m).toExponential(5, "down"), "1.23412e+3");
|
||
|
assert((1234.125m).toPrecision(6), "1234.13");
|
||
|
assert((1234.125m).toPrecision(6, "down"), "1234.12");
|
||
|
assert((-1234.125m).toPrecision(6, "floor"), "-1234.13");
|
||
|
}
|
||
|
|
||
|
test_bigint_ext();
|
||
|
test_bigfloat();
|
||
|
test_bigdecimal();
|