mirror of
https://github.com/bellard/quickjs.git
synced 2025-05-29 01:49:18 +08:00
removed bignum support and qjscalc - added optimized BigInt implementation
This commit is contained in:
parent
837a697588
commit
61e8b94428
43
Makefile
43
Makefile
@ -51,9 +51,6 @@ PREFIX?=/usr/local
|
||||
# use UB sanitizer
|
||||
#CONFIG_UBSAN=y
|
||||
|
||||
# include the code for BigFloat/BigDecimal and math mode
|
||||
CONFIG_BIGNUM=y
|
||||
|
||||
OBJDIR=.obj
|
||||
|
||||
ifdef CONFIG_ASAN
|
||||
@ -137,9 +134,6 @@ ifdef CONFIG_WERROR
|
||||
CFLAGS+=-Werror
|
||||
endif
|
||||
DEFINES:=-D_GNU_SOURCE -DCONFIG_VERSION=\"$(shell cat VERSION)\"
|
||||
ifdef CONFIG_BIGNUM
|
||||
DEFINES+=-DCONFIG_BIGNUM
|
||||
endif
|
||||
ifdef CONFIG_WIN32
|
||||
DEFINES+=-D__USE_MINGW_ANSI_STDIO # for standard snprintf behavior
|
||||
endif
|
||||
@ -201,9 +195,6 @@ else
|
||||
QJSC_CC=$(CC)
|
||||
QJSC=./qjsc$(EXE)
|
||||
endif
|
||||
ifndef CONFIG_WIN32
|
||||
PROGS+=qjscalc
|
||||
endif
|
||||
ifdef CONFIG_M32
|
||||
PROGS+=qjs32 qjs32_s
|
||||
endif
|
||||
@ -228,12 +219,9 @@ endif
|
||||
|
||||
all: $(OBJDIR) $(OBJDIR)/quickjs.check.o $(OBJDIR)/qjs.check.o $(PROGS)
|
||||
|
||||
QJS_LIB_OBJS=$(OBJDIR)/quickjs.o $(OBJDIR)/libregexp.o $(OBJDIR)/libunicode.o $(OBJDIR)/cutils.o $(OBJDIR)/quickjs-libc.o $(OBJDIR)/libbf.o
|
||||
QJS_LIB_OBJS=$(OBJDIR)/quickjs.o $(OBJDIR)/libregexp.o $(OBJDIR)/libunicode.o $(OBJDIR)/cutils.o $(OBJDIR)/quickjs-libc.o
|
||||
|
||||
QJS_OBJS=$(OBJDIR)/qjs.o $(OBJDIR)/repl.o $(QJS_LIB_OBJS)
|
||||
ifdef CONFIG_BIGNUM
|
||||
QJS_OBJS+=$(OBJDIR)/qjscalc.o
|
||||
endif
|
||||
|
||||
HOST_LIBS=-lm -ldl -lpthread
|
||||
LIBS=-lm
|
||||
@ -289,9 +277,6 @@ qjs32_s: $(patsubst %.o, %.m32s.o, $(QJS_OBJS))
|
||||
$(CC) -m32 $(LDFLAGS) -o $@ $^ $(LIBS)
|
||||
@size $@
|
||||
|
||||
qjscalc: qjs
|
||||
ln -sf $< $@
|
||||
|
||||
ifdef CONFIG_LTO
|
||||
LTOEXT=.lto
|
||||
else
|
||||
@ -312,9 +297,6 @@ libquickjs.fuzz.a: $(patsubst %.o, %.fuzz.o, $(QJS_LIB_OBJS))
|
||||
repl.c: $(QJSC) repl.js
|
||||
$(QJSC) -c -o $@ -m repl.js
|
||||
|
||||
qjscalc.c: $(QJSC) qjscalc.js
|
||||
$(QJSC) -fbignum -c -o $@ qjscalc.js
|
||||
|
||||
ifneq ($(wildcard unicode/UnicodeData.txt),)
|
||||
$(OBJDIR)/libunicode.o $(OBJDIR)/libunicode.m32.o $(OBJDIR)/libunicode.m32s.o \
|
||||
$(OBJDIR)/libunicode.nolto.o: libunicode-table.h
|
||||
@ -371,7 +353,7 @@ unicode_gen: $(OBJDIR)/unicode_gen.host.o $(OBJDIR)/cutils.host.o libunicode.c u
|
||||
$(HOST_CC) $(LDFLAGS) $(CFLAGS) -o $@ $(OBJDIR)/unicode_gen.host.o $(OBJDIR)/cutils.host.o
|
||||
|
||||
clean:
|
||||
rm -f repl.c qjscalc.c out.c
|
||||
rm -f repl.c out.c
|
||||
rm -f *.a *.o *.d *~ unicode_gen regexp_test fuzz_eval fuzz_compile fuzz_regexp $(PROGS)
|
||||
rm -f hello.c test_fib.c
|
||||
rm -f examples/*.so tests/*.so
|
||||
@ -383,7 +365,6 @@ install: all
|
||||
mkdir -p "$(DESTDIR)$(PREFIX)/bin"
|
||||
$(STRIP) qjs$(EXE) qjsc$(EXE)
|
||||
install -m755 qjs$(EXE) qjsc$(EXE) "$(DESTDIR)$(PREFIX)/bin"
|
||||
ln -sf qjs$(EXE) "$(DESTDIR)$(PREFIX)/bin/qjscalc$(EXE)"
|
||||
mkdir -p "$(DESTDIR)$(PREFIX)/lib/quickjs"
|
||||
install -m644 libquickjs.a "$(DESTDIR)$(PREFIX)/lib/quickjs"
|
||||
ifdef CONFIG_LTO
|
||||
@ -468,35 +449,21 @@ test: qjs
|
||||
./qjs tests/test_language.js
|
||||
./qjs --std tests/test_builtin.js
|
||||
./qjs tests/test_loop.js
|
||||
./qjs tests/test_bignum.js
|
||||
./qjs tests/test_bigint.js
|
||||
./qjs tests/test_std.js
|
||||
./qjs tests/test_worker.js
|
||||
ifdef CONFIG_SHARED_LIBS
|
||||
ifdef CONFIG_BIGNUM
|
||||
./qjs --bignum tests/test_bjson.js
|
||||
else
|
||||
./qjs tests/test_bjson.js
|
||||
endif
|
||||
./qjs examples/test_point.js
|
||||
endif
|
||||
ifdef CONFIG_BIGNUM
|
||||
./qjs --bignum tests/test_op_overloading.js
|
||||
./qjs --bignum tests/test_bigfloat.js
|
||||
./qjs --qjscalc tests/test_qjscalc.js
|
||||
endif
|
||||
ifdef CONFIG_M32
|
||||
./qjs32 tests/test_closure.js
|
||||
./qjs32 tests/test_language.js
|
||||
./qjs32 --std tests/test_builtin.js
|
||||
./qjs32 tests/test_loop.js
|
||||
./qjs32 tests/test_bignum.js
|
||||
./qjs32 tests/test_bigint.js
|
||||
./qjs32 tests/test_std.js
|
||||
./qjs32 tests/test_worker.js
|
||||
ifdef CONFIG_BIGNUM
|
||||
./qjs32 --bignum tests/test_op_overloading.js
|
||||
./qjs32 --bignum tests/test_bigfloat.js
|
||||
./qjs32 --qjscalc tests/test_qjscalc.js
|
||||
endif
|
||||
endif
|
||||
|
||||
stats: qjs qjs32
|
||||
@ -556,7 +523,7 @@ node-test:
|
||||
node tests/test_language.js
|
||||
node tests/test_builtin.js
|
||||
node tests/test_loop.js
|
||||
node tests/test_bignum.js
|
||||
node tests/test_bigint.js
|
||||
|
||||
node-microbench:
|
||||
node tests/microbench.js -s microbench-node.txt
|
||||
|
1
TODO
1
TODO
@ -38,7 +38,6 @@ REPL:
|
||||
|
||||
Optimization ideas:
|
||||
- 64-bit atoms in 64-bit mode ?
|
||||
- 64-bit small bigint in 64-bit mode ?
|
||||
- reuse stack slots for disjoint scopes, if strip
|
||||
- add heuristic to avoid some cycles in closures
|
||||
- small String (0-2 charcodes) with immediate storage
|
||||
|
20
cutils.h
20
cutils.h
@ -344,4 +344,24 @@ void rqsort(void *base, size_t nmemb, size_t size,
|
||||
int (*cmp)(const void *, const void *, void *),
|
||||
void *arg);
|
||||
|
||||
static inline uint64_t float64_as_uint64(double d)
|
||||
{
|
||||
union {
|
||||
double d;
|
||||
uint64_t u64;
|
||||
} u;
|
||||
u.d = d;
|
||||
return u.u64;
|
||||
}
|
||||
|
||||
static inline double uint64_as_float64(uint64_t u64)
|
||||
{
|
||||
union {
|
||||
double d;
|
||||
uint64_t u64;
|
||||
} u;
|
||||
u.u64 = u64;
|
||||
return u.d;
|
||||
}
|
||||
|
||||
#endif /* CUTILS_H */
|
||||
|
@ -1,68 +0,0 @@
|
||||
/*
|
||||
* PI computation in Javascript using the QuickJS bigdecimal type
|
||||
* (decimal floating point)
|
||||
*/
|
||||
"use strict";
|
||||
|
||||
/* compute PI with a precision of 'prec' digits */
|
||||
function calc_pi(prec) {
|
||||
const CHUD_A = 13591409m;
|
||||
const CHUD_B = 545140134m;
|
||||
const CHUD_C = 640320m;
|
||||
const CHUD_C3 = 10939058860032000m; /* C^3/24 */
|
||||
const CHUD_DIGITS_PER_TERM = 14.18164746272548; /* log10(C/12)*3 */
|
||||
|
||||
/* return [P, Q, G] */
|
||||
function chud_bs(a, b, need_G) {
|
||||
var c, P, Q, G, P1, Q1, G1, P2, Q2, G2, b1;
|
||||
if (a == (b - 1n)) {
|
||||
b1 = BigDecimal(b);
|
||||
G = (2m * b1 - 1m) * (6m * b1 - 1m) * (6m * b1 - 5m);
|
||||
P = G * (CHUD_B * b1 + CHUD_A);
|
||||
if (b & 1n)
|
||||
P = -P;
|
||||
G = G;
|
||||
Q = b1 * b1 * b1 * CHUD_C3;
|
||||
} else {
|
||||
c = (a + b) >> 1n;
|
||||
[P1, Q1, G1] = chud_bs(a, c, true);
|
||||
[P2, Q2, G2] = chud_bs(c, b, need_G);
|
||||
P = P1 * Q2 + P2 * G1;
|
||||
Q = Q1 * Q2;
|
||||
if (need_G)
|
||||
G = G1 * G2;
|
||||
else
|
||||
G = 0m;
|
||||
}
|
||||
return [P, Q, G];
|
||||
}
|
||||
|
||||
var n, P, Q, G;
|
||||
/* number of serie terms */
|
||||
n = BigInt(Math.ceil(prec / CHUD_DIGITS_PER_TERM)) + 10n;
|
||||
[P, Q, G] = chud_bs(0n, n, false);
|
||||
Q = BigDecimal.div(Q, (P + Q * CHUD_A),
|
||||
{ roundingMode: "half-even",
|
||||
maximumSignificantDigits: prec });
|
||||
G = (CHUD_C / 12m) * BigDecimal.sqrt(CHUD_C,
|
||||
{ roundingMode: "half-even",
|
||||
maximumSignificantDigits: prec });
|
||||
return Q * G;
|
||||
}
|
||||
|
||||
(function() {
|
||||
var r, n_digits, n_bits;
|
||||
if (typeof scriptArgs != "undefined") {
|
||||
if (scriptArgs.length < 2) {
|
||||
print("usage: pi n_digits");
|
||||
return;
|
||||
}
|
||||
n_digits = scriptArgs[1] | 0;
|
||||
} else {
|
||||
n_digits = 1000;
|
||||
}
|
||||
/* we add more digits to reduce the probability of bad rounding for
|
||||
the last digits */
|
||||
r = calc_pi(n_digits + 20);
|
||||
print(r.toFixed(n_digits, "down"));
|
||||
})();
|
@ -1,66 +0,0 @@
|
||||
/*
|
||||
* PI computation in Javascript using the QuickJS bigfloat type
|
||||
* (binary floating point)
|
||||
*/
|
||||
"use strict";
|
||||
|
||||
/* compute PI with a precision of 'prec' bits */
|
||||
function calc_pi() {
|
||||
const CHUD_A = 13591409n;
|
||||
const CHUD_B = 545140134n;
|
||||
const CHUD_C = 640320n;
|
||||
const CHUD_C3 = 10939058860032000n; /* C^3/24 */
|
||||
const CHUD_BITS_PER_TERM = 47.11041313821584202247; /* log2(C/12)*3 */
|
||||
|
||||
/* return [P, Q, G] */
|
||||
function chud_bs(a, b, need_G) {
|
||||
var c, P, Q, G, P1, Q1, G1, P2, Q2, G2;
|
||||
if (a == (b - 1n)) {
|
||||
G = (2n * b - 1n) * (6n * b - 1n) * (6n * b - 5n);
|
||||
P = BigFloat(G * (CHUD_B * b + CHUD_A));
|
||||
if (b & 1n)
|
||||
P = -P;
|
||||
G = BigFloat(G);
|
||||
Q = BigFloat(b * b * b * CHUD_C3);
|
||||
} else {
|
||||
c = (a + b) >> 1n;
|
||||
[P1, Q1, G1] = chud_bs(a, c, true);
|
||||
[P2, Q2, G2] = chud_bs(c, b, need_G);
|
||||
P = P1 * Q2 + P2 * G1;
|
||||
Q = Q1 * Q2;
|
||||
if (need_G)
|
||||
G = G1 * G2;
|
||||
else
|
||||
G = 0l;
|
||||
}
|
||||
return [P, Q, G];
|
||||
}
|
||||
|
||||
var n, P, Q, G;
|
||||
/* number of serie terms */
|
||||
n = BigInt(Math.ceil(BigFloatEnv.prec / CHUD_BITS_PER_TERM)) + 10n;
|
||||
[P, Q, G] = chud_bs(0n, n, false);
|
||||
Q = Q / (P + Q * BigFloat(CHUD_A));
|
||||
G = BigFloat((CHUD_C / 12n)) * BigFloat.sqrt(BigFloat(CHUD_C));
|
||||
return Q * G;
|
||||
}
|
||||
|
||||
(function() {
|
||||
var r, n_digits, n_bits;
|
||||
if (typeof scriptArgs != "undefined") {
|
||||
if (scriptArgs.length < 2) {
|
||||
print("usage: pi n_digits");
|
||||
return;
|
||||
}
|
||||
n_digits = scriptArgs[1];
|
||||
} else {
|
||||
n_digits = 1000;
|
||||
}
|
||||
n_bits = Math.ceil(n_digits * Math.log2(10));
|
||||
/* we add more bits to reduce the probability of bad rounding for
|
||||
the last digits */
|
||||
BigFloatEnv.setPrec( () => {
|
||||
r = calc_pi();
|
||||
print(r.toFixed(n_digits, BigFloatEnv.RNDZ));
|
||||
}, n_bits + 32);
|
||||
})();
|
535
libbf.h
535
libbf.h
@ -1,535 +0,0 @@
|
||||
/*
|
||||
* Tiny arbitrary precision floating point library
|
||||
*
|
||||
* Copyright (c) 2017-2021 Fabrice Bellard
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||||
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
* THE SOFTWARE.
|
||||
*/
|
||||
#ifndef LIBBF_H
|
||||
#define LIBBF_H
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#if defined(__SIZEOF_INT128__) && (INTPTR_MAX >= INT64_MAX)
|
||||
#define LIMB_LOG2_BITS 6
|
||||
#else
|
||||
#define LIMB_LOG2_BITS 5
|
||||
#endif
|
||||
|
||||
#define LIMB_BITS (1 << LIMB_LOG2_BITS)
|
||||
|
||||
#if LIMB_BITS == 64
|
||||
typedef __int128 int128_t;
|
||||
typedef unsigned __int128 uint128_t;
|
||||
typedef int64_t slimb_t;
|
||||
typedef uint64_t limb_t;
|
||||
typedef uint128_t dlimb_t;
|
||||
#define BF_RAW_EXP_MIN INT64_MIN
|
||||
#define BF_RAW_EXP_MAX INT64_MAX
|
||||
|
||||
#define LIMB_DIGITS 19
|
||||
#define BF_DEC_BASE UINT64_C(10000000000000000000)
|
||||
|
||||
#else
|
||||
|
||||
typedef int32_t slimb_t;
|
||||
typedef uint32_t limb_t;
|
||||
typedef uint64_t dlimb_t;
|
||||
#define BF_RAW_EXP_MIN INT32_MIN
|
||||
#define BF_RAW_EXP_MAX INT32_MAX
|
||||
|
||||
#define LIMB_DIGITS 9
|
||||
#define BF_DEC_BASE 1000000000U
|
||||
|
||||
#endif
|
||||
|
||||
/* in bits */
|
||||
/* minimum number of bits for the exponent */
|
||||
#define BF_EXP_BITS_MIN 3
|
||||
/* maximum number of bits for the exponent */
|
||||
#define BF_EXP_BITS_MAX (LIMB_BITS - 3)
|
||||
/* extended range for exponent, used internally */
|
||||
#define BF_EXT_EXP_BITS_MAX (BF_EXP_BITS_MAX + 1)
|
||||
/* minimum possible precision */
|
||||
#define BF_PREC_MIN 2
|
||||
/* minimum possible precision */
|
||||
#define BF_PREC_MAX (((limb_t)1 << (LIMB_BITS - 2)) - 2)
|
||||
/* some operations support infinite precision */
|
||||
#define BF_PREC_INF (BF_PREC_MAX + 1) /* infinite precision */
|
||||
|
||||
#if LIMB_BITS == 64
|
||||
#define BF_CHKSUM_MOD (UINT64_C(975620677) * UINT64_C(9795002197))
|
||||
#else
|
||||
#define BF_CHKSUM_MOD 975620677U
|
||||
#endif
|
||||
|
||||
#define BF_EXP_ZERO BF_RAW_EXP_MIN
|
||||
#define BF_EXP_INF (BF_RAW_EXP_MAX - 1)
|
||||
#define BF_EXP_NAN BF_RAW_EXP_MAX
|
||||
|
||||
/* +/-zero is represented with expn = BF_EXP_ZERO and len = 0,
|
||||
+/-infinity is represented with expn = BF_EXP_INF and len = 0,
|
||||
NaN is represented with expn = BF_EXP_NAN and len = 0 (sign is ignored)
|
||||
*/
|
||||
typedef struct {
|
||||
struct bf_context_t *ctx;
|
||||
int sign;
|
||||
slimb_t expn;
|
||||
limb_t len;
|
||||
limb_t *tab;
|
||||
} bf_t;
|
||||
|
||||
typedef struct {
|
||||
/* must be kept identical to bf_t */
|
||||
struct bf_context_t *ctx;
|
||||
int sign;
|
||||
slimb_t expn;
|
||||
limb_t len;
|
||||
limb_t *tab;
|
||||
} bfdec_t;
|
||||
|
||||
typedef enum {
|
||||
BF_RNDN, /* round to nearest, ties to even */
|
||||
BF_RNDZ, /* round to zero */
|
||||
BF_RNDD, /* round to -inf (the code relies on (BF_RNDD xor BF_RNDU) = 1) */
|
||||
BF_RNDU, /* round to +inf */
|
||||
BF_RNDNA, /* round to nearest, ties away from zero */
|
||||
BF_RNDA, /* round away from zero */
|
||||
BF_RNDF, /* faithful rounding (nondeterministic, either RNDD or RNDU,
|
||||
inexact flag is always set) */
|
||||
} bf_rnd_t;
|
||||
|
||||
/* allow subnormal numbers. Only available if the number of exponent
|
||||
bits is <= BF_EXP_BITS_USER_MAX and prec != BF_PREC_INF. */
|
||||
#define BF_FLAG_SUBNORMAL (1 << 3)
|
||||
/* 'prec' is the precision after the radix point instead of the whole
|
||||
mantissa. Can only be used with bf_round() and
|
||||
bfdec_[add|sub|mul|div|sqrt|round](). */
|
||||
#define BF_FLAG_RADPNT_PREC (1 << 4)
|
||||
|
||||
#define BF_RND_MASK 0x7
|
||||
#define BF_EXP_BITS_SHIFT 5
|
||||
#define BF_EXP_BITS_MASK 0x3f
|
||||
|
||||
/* shortcut for bf_set_exp_bits(BF_EXT_EXP_BITS_MAX) */
|
||||
#define BF_FLAG_EXT_EXP (BF_EXP_BITS_MASK << BF_EXP_BITS_SHIFT)
|
||||
|
||||
/* contains the rounding mode and number of exponents bits */
|
||||
typedef uint32_t bf_flags_t;
|
||||
|
||||
typedef void *bf_realloc_func_t(void *opaque, void *ptr, size_t size);
|
||||
|
||||
typedef struct {
|
||||
bf_t val;
|
||||
limb_t prec;
|
||||
} BFConstCache;
|
||||
|
||||
typedef struct bf_context_t {
|
||||
void *realloc_opaque;
|
||||
bf_realloc_func_t *realloc_func;
|
||||
BFConstCache log2_cache;
|
||||
BFConstCache pi_cache;
|
||||
struct BFNTTState *ntt_state;
|
||||
} bf_context_t;
|
||||
|
||||
static inline int bf_get_exp_bits(bf_flags_t flags)
|
||||
{
|
||||
int e;
|
||||
e = (flags >> BF_EXP_BITS_SHIFT) & BF_EXP_BITS_MASK;
|
||||
if (e == BF_EXP_BITS_MASK)
|
||||
return BF_EXP_BITS_MAX + 1;
|
||||
else
|
||||
return BF_EXP_BITS_MAX - e;
|
||||
}
|
||||
|
||||
static inline bf_flags_t bf_set_exp_bits(int n)
|
||||
{
|
||||
return ((BF_EXP_BITS_MAX - n) & BF_EXP_BITS_MASK) << BF_EXP_BITS_SHIFT;
|
||||
}
|
||||
|
||||
/* returned status */
|
||||
#define BF_ST_INVALID_OP (1 << 0)
|
||||
#define BF_ST_DIVIDE_ZERO (1 << 1)
|
||||
#define BF_ST_OVERFLOW (1 << 2)
|
||||
#define BF_ST_UNDERFLOW (1 << 3)
|
||||
#define BF_ST_INEXACT (1 << 4)
|
||||
/* indicate that a memory allocation error occured. NaN is returned */
|
||||
#define BF_ST_MEM_ERROR (1 << 5)
|
||||
|
||||
#define BF_RADIX_MAX 36 /* maximum radix for bf_atof() and bf_ftoa() */
|
||||
|
||||
static inline slimb_t bf_max(slimb_t a, slimb_t b)
|
||||
{
|
||||
if (a > b)
|
||||
return a;
|
||||
else
|
||||
return b;
|
||||
}
|
||||
|
||||
static inline slimb_t bf_min(slimb_t a, slimb_t b)
|
||||
{
|
||||
if (a < b)
|
||||
return a;
|
||||
else
|
||||
return b;
|
||||
}
|
||||
|
||||
void bf_context_init(bf_context_t *s, bf_realloc_func_t *realloc_func,
|
||||
void *realloc_opaque);
|
||||
void bf_context_end(bf_context_t *s);
|
||||
/* free memory allocated for the bf cache data */
|
||||
void bf_clear_cache(bf_context_t *s);
|
||||
|
||||
static inline void *bf_realloc(bf_context_t *s, void *ptr, size_t size)
|
||||
{
|
||||
return s->realloc_func(s->realloc_opaque, ptr, size);
|
||||
}
|
||||
|
||||
/* 'size' must be != 0 */
|
||||
static inline void *bf_malloc(bf_context_t *s, size_t size)
|
||||
{
|
||||
return bf_realloc(s, NULL, size);
|
||||
}
|
||||
|
||||
static inline void bf_free(bf_context_t *s, void *ptr)
|
||||
{
|
||||
/* must test ptr otherwise equivalent to malloc(0) */
|
||||
if (ptr)
|
||||
bf_realloc(s, ptr, 0);
|
||||
}
|
||||
|
||||
void bf_init(bf_context_t *s, bf_t *r);
|
||||
|
||||
static inline void bf_delete(bf_t *r)
|
||||
{
|
||||
bf_context_t *s = r->ctx;
|
||||
/* we accept to delete a zeroed bf_t structure */
|
||||
if (s && r->tab) {
|
||||
bf_realloc(s, r->tab, 0);
|
||||
}
|
||||
}
|
||||
|
||||
static inline void bf_neg(bf_t *r)
|
||||
{
|
||||
r->sign ^= 1;
|
||||
}
|
||||
|
||||
static inline int bf_is_finite(const bf_t *a)
|
||||
{
|
||||
return (a->expn < BF_EXP_INF);
|
||||
}
|
||||
|
||||
static inline int bf_is_nan(const bf_t *a)
|
||||
{
|
||||
return (a->expn == BF_EXP_NAN);
|
||||
}
|
||||
|
||||
static inline int bf_is_zero(const bf_t *a)
|
||||
{
|
||||
return (a->expn == BF_EXP_ZERO);
|
||||
}
|
||||
|
||||
static inline void bf_memcpy(bf_t *r, const bf_t *a)
|
||||
{
|
||||
*r = *a;
|
||||
}
|
||||
|
||||
int bf_set_ui(bf_t *r, uint64_t a);
|
||||
int bf_set_si(bf_t *r, int64_t a);
|
||||
void bf_set_nan(bf_t *r);
|
||||
void bf_set_zero(bf_t *r, int is_neg);
|
||||
void bf_set_inf(bf_t *r, int is_neg);
|
||||
int bf_set(bf_t *r, const bf_t *a);
|
||||
void bf_move(bf_t *r, bf_t *a);
|
||||
int bf_get_float64(const bf_t *a, double *pres, bf_rnd_t rnd_mode);
|
||||
int bf_set_float64(bf_t *a, double d);
|
||||
|
||||
int bf_cmpu(const bf_t *a, const bf_t *b);
|
||||
int bf_cmp_full(const bf_t *a, const bf_t *b);
|
||||
int bf_cmp(const bf_t *a, const bf_t *b);
|
||||
static inline int bf_cmp_eq(const bf_t *a, const bf_t *b)
|
||||
{
|
||||
return bf_cmp(a, b) == 0;
|
||||
}
|
||||
|
||||
static inline int bf_cmp_le(const bf_t *a, const bf_t *b)
|
||||
{
|
||||
return bf_cmp(a, b) <= 0;
|
||||
}
|
||||
|
||||
static inline int bf_cmp_lt(const bf_t *a, const bf_t *b)
|
||||
{
|
||||
return bf_cmp(a, b) < 0;
|
||||
}
|
||||
|
||||
int bf_add(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec, bf_flags_t flags);
|
||||
int bf_sub(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec, bf_flags_t flags);
|
||||
int bf_add_si(bf_t *r, const bf_t *a, int64_t b1, limb_t prec, bf_flags_t flags);
|
||||
int bf_mul(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec, bf_flags_t flags);
|
||||
int bf_mul_ui(bf_t *r, const bf_t *a, uint64_t b1, limb_t prec, bf_flags_t flags);
|
||||
int bf_mul_si(bf_t *r, const bf_t *a, int64_t b1, limb_t prec,
|
||||
bf_flags_t flags);
|
||||
int bf_mul_2exp(bf_t *r, slimb_t e, limb_t prec, bf_flags_t flags);
|
||||
int bf_div(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec, bf_flags_t flags);
|
||||
#define BF_DIVREM_EUCLIDIAN BF_RNDF
|
||||
int bf_divrem(bf_t *q, bf_t *r, const bf_t *a, const bf_t *b,
|
||||
limb_t prec, bf_flags_t flags, int rnd_mode);
|
||||
int bf_rem(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
|
||||
bf_flags_t flags, int rnd_mode);
|
||||
int bf_remquo(slimb_t *pq, bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
|
||||
bf_flags_t flags, int rnd_mode);
|
||||
/* round to integer with infinite precision */
|
||||
int bf_rint(bf_t *r, int rnd_mode);
|
||||
int bf_round(bf_t *r, limb_t prec, bf_flags_t flags);
|
||||
int bf_sqrtrem(bf_t *r, bf_t *rem1, const bf_t *a);
|
||||
int bf_sqrt(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
|
||||
slimb_t bf_get_exp_min(const bf_t *a);
|
||||
int bf_logic_or(bf_t *r, const bf_t *a, const bf_t *b);
|
||||
int bf_logic_xor(bf_t *r, const bf_t *a, const bf_t *b);
|
||||
int bf_logic_and(bf_t *r, const bf_t *a, const bf_t *b);
|
||||
|
||||
/* additional flags for bf_atof */
|
||||
/* do not accept hex radix prefix (0x or 0X) if radix = 0 or radix = 16 */
|
||||
#define BF_ATOF_NO_HEX (1 << 16)
|
||||
/* accept binary (0b or 0B) or octal (0o or 0O) radix prefix if radix = 0 */
|
||||
#define BF_ATOF_BIN_OCT (1 << 17)
|
||||
/* Do not parse NaN or Inf */
|
||||
#define BF_ATOF_NO_NAN_INF (1 << 18)
|
||||
/* return the exponent separately */
|
||||
#define BF_ATOF_EXPONENT (1 << 19)
|
||||
|
||||
int bf_atof(bf_t *a, const char *str, const char **pnext, int radix,
|
||||
limb_t prec, bf_flags_t flags);
|
||||
/* this version accepts prec = BF_PREC_INF and returns the radix
|
||||
exponent */
|
||||
int bf_atof2(bf_t *r, slimb_t *pexponent,
|
||||
const char *str, const char **pnext, int radix,
|
||||
limb_t prec, bf_flags_t flags);
|
||||
int bf_mul_pow_radix(bf_t *r, const bf_t *T, limb_t radix,
|
||||
slimb_t expn, limb_t prec, bf_flags_t flags);
|
||||
|
||||
|
||||
/* Conversion of floating point number to string. Return a null
|
||||
terminated string or NULL if memory error. *plen contains its
|
||||
length if plen != NULL. The exponent letter is "e" for base 10,
|
||||
"p" for bases 2, 8, 16 with a binary exponent and "@" for the other
|
||||
bases. */
|
||||
|
||||
#define BF_FTOA_FORMAT_MASK (3 << 16)
|
||||
|
||||
/* fixed format: prec significant digits rounded with (flags &
|
||||
BF_RND_MASK). Exponential notation is used if too many zeros are
|
||||
needed.*/
|
||||
#define BF_FTOA_FORMAT_FIXED (0 << 16)
|
||||
/* fractional format: prec digits after the decimal point rounded with
|
||||
(flags & BF_RND_MASK) */
|
||||
#define BF_FTOA_FORMAT_FRAC (1 << 16)
|
||||
/* free format:
|
||||
|
||||
For binary radices with bf_ftoa() and for bfdec_ftoa(): use the minimum
|
||||
number of digits to represent 'a'. The precision and the rounding
|
||||
mode are ignored.
|
||||
|
||||
For the non binary radices with bf_ftoa(): use as many digits as
|
||||
necessary so that bf_atof() return the same number when using
|
||||
precision 'prec', rounding to nearest and the subnormal
|
||||
configuration of 'flags'. The result is meaningful only if 'a' is
|
||||
already rounded to 'prec' bits. If the subnormal flag is set, the
|
||||
exponent in 'flags' must also be set to the desired exponent range.
|
||||
*/
|
||||
#define BF_FTOA_FORMAT_FREE (2 << 16)
|
||||
/* same as BF_FTOA_FORMAT_FREE but uses the minimum number of digits
|
||||
(takes more computation time). Identical to BF_FTOA_FORMAT_FREE for
|
||||
binary radices with bf_ftoa() and for bfdec_ftoa(). */
|
||||
#define BF_FTOA_FORMAT_FREE_MIN (3 << 16)
|
||||
|
||||
/* force exponential notation for fixed or free format */
|
||||
#define BF_FTOA_FORCE_EXP (1 << 20)
|
||||
/* add 0x prefix for base 16, 0o prefix for base 8 or 0b prefix for
|
||||
base 2 if non zero value */
|
||||
#define BF_FTOA_ADD_PREFIX (1 << 21)
|
||||
/* return "Infinity" instead of "Inf" and add a "+" for positive
|
||||
exponents */
|
||||
#define BF_FTOA_JS_QUIRKS (1 << 22)
|
||||
|
||||
char *bf_ftoa(size_t *plen, const bf_t *a, int radix, limb_t prec,
|
||||
bf_flags_t flags);
|
||||
|
||||
/* modulo 2^n instead of saturation. NaN and infinity return 0 */
|
||||
#define BF_GET_INT_MOD (1 << 0)
|
||||
int bf_get_int32(int *pres, const bf_t *a, int flags);
|
||||
int bf_get_int64(int64_t *pres, const bf_t *a, int flags);
|
||||
int bf_get_uint64(uint64_t *pres, const bf_t *a);
|
||||
|
||||
/* the following functions are exported for testing only. */
|
||||
void mp_print_str(const char *str, const limb_t *tab, limb_t n);
|
||||
void bf_print_str(const char *str, const bf_t *a);
|
||||
int bf_resize(bf_t *r, limb_t len);
|
||||
int bf_get_fft_size(int *pdpl, int *pnb_mods, limb_t len);
|
||||
int bf_normalize_and_round(bf_t *r, limb_t prec1, bf_flags_t flags);
|
||||
int bf_can_round(const bf_t *a, slimb_t prec, bf_rnd_t rnd_mode, slimb_t k);
|
||||
slimb_t bf_mul_log2_radix(slimb_t a1, unsigned int radix, int is_inv,
|
||||
int is_ceil1);
|
||||
int mp_mul(bf_context_t *s, limb_t *result,
|
||||
const limb_t *op1, limb_t op1_size,
|
||||
const limb_t *op2, limb_t op2_size);
|
||||
limb_t mp_add(limb_t *res, const limb_t *op1, const limb_t *op2,
|
||||
limb_t n, limb_t carry);
|
||||
limb_t mp_add_ui(limb_t *tab, limb_t b, size_t n);
|
||||
int mp_sqrtrem(bf_context_t *s, limb_t *tabs, limb_t *taba, limb_t n);
|
||||
int mp_recip(bf_context_t *s, limb_t *tabr, const limb_t *taba, limb_t n);
|
||||
limb_t bf_isqrt(limb_t a);
|
||||
|
||||
/* transcendental functions */
|
||||
int bf_const_log2(bf_t *T, limb_t prec, bf_flags_t flags);
|
||||
int bf_const_pi(bf_t *T, limb_t prec, bf_flags_t flags);
|
||||
int bf_exp(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
|
||||
int bf_log(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
|
||||
#define BF_POW_JS_QUIRKS (1 << 16) /* (+/-1)^(+/-Inf) = NaN, 1^NaN = NaN */
|
||||
int bf_pow(bf_t *r, const bf_t *x, const bf_t *y, limb_t prec, bf_flags_t flags);
|
||||
int bf_cos(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
|
||||
int bf_sin(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
|
||||
int bf_tan(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
|
||||
int bf_atan(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
|
||||
int bf_atan2(bf_t *r, const bf_t *y, const bf_t *x,
|
||||
limb_t prec, bf_flags_t flags);
|
||||
int bf_asin(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
|
||||
int bf_acos(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
|
||||
|
||||
/* decimal floating point */
|
||||
|
||||
static inline void bfdec_init(bf_context_t *s, bfdec_t *r)
|
||||
{
|
||||
bf_init(s, (bf_t *)r);
|
||||
}
|
||||
static inline void bfdec_delete(bfdec_t *r)
|
||||
{
|
||||
bf_delete((bf_t *)r);
|
||||
}
|
||||
|
||||
static inline void bfdec_neg(bfdec_t *r)
|
||||
{
|
||||
r->sign ^= 1;
|
||||
}
|
||||
|
||||
static inline int bfdec_is_finite(const bfdec_t *a)
|
||||
{
|
||||
return (a->expn < BF_EXP_INF);
|
||||
}
|
||||
|
||||
static inline int bfdec_is_nan(const bfdec_t *a)
|
||||
{
|
||||
return (a->expn == BF_EXP_NAN);
|
||||
}
|
||||
|
||||
static inline int bfdec_is_zero(const bfdec_t *a)
|
||||
{
|
||||
return (a->expn == BF_EXP_ZERO);
|
||||
}
|
||||
|
||||
static inline void bfdec_memcpy(bfdec_t *r, const bfdec_t *a)
|
||||
{
|
||||
bf_memcpy((bf_t *)r, (const bf_t *)a);
|
||||
}
|
||||
|
||||
int bfdec_set_ui(bfdec_t *r, uint64_t a);
|
||||
int bfdec_set_si(bfdec_t *r, int64_t a);
|
||||
|
||||
static inline void bfdec_set_nan(bfdec_t *r)
|
||||
{
|
||||
bf_set_nan((bf_t *)r);
|
||||
}
|
||||
static inline void bfdec_set_zero(bfdec_t *r, int is_neg)
|
||||
{
|
||||
bf_set_zero((bf_t *)r, is_neg);
|
||||
}
|
||||
static inline void bfdec_set_inf(bfdec_t *r, int is_neg)
|
||||
{
|
||||
bf_set_inf((bf_t *)r, is_neg);
|
||||
}
|
||||
static inline int bfdec_set(bfdec_t *r, const bfdec_t *a)
|
||||
{
|
||||
return bf_set((bf_t *)r, (bf_t *)a);
|
||||
}
|
||||
static inline void bfdec_move(bfdec_t *r, bfdec_t *a)
|
||||
{
|
||||
bf_move((bf_t *)r, (bf_t *)a);
|
||||
}
|
||||
static inline int bfdec_cmpu(const bfdec_t *a, const bfdec_t *b)
|
||||
{
|
||||
return bf_cmpu((const bf_t *)a, (const bf_t *)b);
|
||||
}
|
||||
static inline int bfdec_cmp_full(const bfdec_t *a, const bfdec_t *b)
|
||||
{
|
||||
return bf_cmp_full((const bf_t *)a, (const bf_t *)b);
|
||||
}
|
||||
static inline int bfdec_cmp(const bfdec_t *a, const bfdec_t *b)
|
||||
{
|
||||
return bf_cmp((const bf_t *)a, (const bf_t *)b);
|
||||
}
|
||||
static inline int bfdec_cmp_eq(const bfdec_t *a, const bfdec_t *b)
|
||||
{
|
||||
return bfdec_cmp(a, b) == 0;
|
||||
}
|
||||
static inline int bfdec_cmp_le(const bfdec_t *a, const bfdec_t *b)
|
||||
{
|
||||
return bfdec_cmp(a, b) <= 0;
|
||||
}
|
||||
static inline int bfdec_cmp_lt(const bfdec_t *a, const bfdec_t *b)
|
||||
{
|
||||
return bfdec_cmp(a, b) < 0;
|
||||
}
|
||||
|
||||
int bfdec_add(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
|
||||
bf_flags_t flags);
|
||||
int bfdec_sub(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
|
||||
bf_flags_t flags);
|
||||
int bfdec_add_si(bfdec_t *r, const bfdec_t *a, int64_t b1, limb_t prec,
|
||||
bf_flags_t flags);
|
||||
int bfdec_mul(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
|
||||
bf_flags_t flags);
|
||||
int bfdec_mul_si(bfdec_t *r, const bfdec_t *a, int64_t b1, limb_t prec,
|
||||
bf_flags_t flags);
|
||||
int bfdec_div(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
|
||||
bf_flags_t flags);
|
||||
int bfdec_divrem(bfdec_t *q, bfdec_t *r, const bfdec_t *a, const bfdec_t *b,
|
||||
limb_t prec, bf_flags_t flags, int rnd_mode);
|
||||
int bfdec_rem(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
|
||||
bf_flags_t flags, int rnd_mode);
|
||||
int bfdec_rint(bfdec_t *r, int rnd_mode);
|
||||
int bfdec_sqrt(bfdec_t *r, const bfdec_t *a, limb_t prec, bf_flags_t flags);
|
||||
int bfdec_round(bfdec_t *r, limb_t prec, bf_flags_t flags);
|
||||
int bfdec_get_int32(int *pres, const bfdec_t *a);
|
||||
int bfdec_pow_ui(bfdec_t *r, const bfdec_t *a, limb_t b);
|
||||
|
||||
char *bfdec_ftoa(size_t *plen, const bfdec_t *a, limb_t prec, bf_flags_t flags);
|
||||
int bfdec_atof(bfdec_t *r, const char *str, const char **pnext,
|
||||
limb_t prec, bf_flags_t flags);
|
||||
|
||||
/* the following functions are exported for testing only. */
|
||||
extern const limb_t mp_pow_dec[LIMB_DIGITS + 1];
|
||||
void bfdec_print_str(const char *str, const bfdec_t *a);
|
||||
static inline int bfdec_resize(bfdec_t *r, limb_t len)
|
||||
{
|
||||
return bf_resize((bf_t *)r, len);
|
||||
}
|
||||
int bfdec_normalize_and_round(bfdec_t *r, limb_t prec1, bf_flags_t flags);
|
||||
|
||||
#endif /* LIBBF_H */
|
52
qjs.c
52
qjs.c
@ -45,11 +45,6 @@
|
||||
|
||||
extern const uint8_t qjsc_repl[];
|
||||
extern const uint32_t qjsc_repl_size;
|
||||
#ifdef CONFIG_BIGNUM
|
||||
extern const uint8_t qjsc_qjscalc[];
|
||||
extern const uint32_t qjsc_qjscalc_size;
|
||||
static int bignum_ext;
|
||||
#endif
|
||||
|
||||
static int eval_buf(JSContext *ctx, const void *buf, int buf_len,
|
||||
const char *filename, int eval_flags)
|
||||
@ -112,14 +107,6 @@ static JSContext *JS_NewCustomContext(JSRuntime *rt)
|
||||
ctx = JS_NewContext(rt);
|
||||
if (!ctx)
|
||||
return NULL;
|
||||
#ifdef CONFIG_BIGNUM
|
||||
if (bignum_ext) {
|
||||
JS_AddIntrinsicBigFloat(ctx);
|
||||
JS_AddIntrinsicBigDecimal(ctx);
|
||||
JS_AddIntrinsicOperators(ctx);
|
||||
JS_EnableBignumExt(ctx, TRUE);
|
||||
}
|
||||
#endif
|
||||
/* system modules */
|
||||
js_init_module_std(ctx, "std");
|
||||
js_init_module_os(ctx, "os");
|
||||
@ -283,10 +270,6 @@ void help(void)
|
||||
" --script load as ES6 script (default=autodetect)\n"
|
||||
"-I --include file include an additional file\n"
|
||||
" --std make 'std' and 'os' available to the loaded script\n"
|
||||
#ifdef CONFIG_BIGNUM
|
||||
" --bignum enable the bignum extensions (BigFloat, BigDecimal)\n"
|
||||
" --qjscalc load the QJSCalc runtime (default if invoked as qjscalc)\n"
|
||||
#endif
|
||||
"-T --trace trace memory allocation\n"
|
||||
"-d --dump dump the memory usage stats\n"
|
||||
" --memory-limit n limit the memory usage to 'n' bytes\n"
|
||||
@ -313,23 +296,8 @@ int main(int argc, char **argv)
|
||||
size_t memory_limit = 0;
|
||||
char *include_list[32];
|
||||
int i, include_count = 0;
|
||||
#ifdef CONFIG_BIGNUM
|
||||
int load_jscalc;
|
||||
#endif
|
||||
size_t stack_size = 0;
|
||||
|
||||
#ifdef CONFIG_BIGNUM
|
||||
/* load jscalc runtime if invoked as 'qjscalc' */
|
||||
{
|
||||
const char *p, *exename;
|
||||
exename = argv[0];
|
||||
p = strrchr(exename, '/');
|
||||
if (p)
|
||||
exename = p + 1;
|
||||
load_jscalc = !strcmp(exename, "qjscalc");
|
||||
}
|
||||
#endif
|
||||
|
||||
/* cannot use getopt because we want to pass the command line to
|
||||
the script */
|
||||
optind = 1;
|
||||
@ -407,16 +375,6 @@ int main(int argc, char **argv)
|
||||
dump_unhandled_promise_rejection = 1;
|
||||
continue;
|
||||
}
|
||||
#ifdef CONFIG_BIGNUM
|
||||
if (!strcmp(longopt, "bignum")) {
|
||||
bignum_ext = 1;
|
||||
continue;
|
||||
}
|
||||
if (!strcmp(longopt, "qjscalc")) {
|
||||
load_jscalc = 1;
|
||||
continue;
|
||||
}
|
||||
#endif
|
||||
if (opt == 'q' || !strcmp(longopt, "quit")) {
|
||||
empty_run++;
|
||||
continue;
|
||||
@ -446,11 +404,6 @@ int main(int argc, char **argv)
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef CONFIG_BIGNUM
|
||||
if (load_jscalc)
|
||||
bignum_ext = 1;
|
||||
#endif
|
||||
|
||||
if (trace_memory) {
|
||||
js_trace_malloc_init(&trace_data);
|
||||
rt = JS_NewRuntime2(&trace_mf, &trace_data);
|
||||
@ -482,11 +435,6 @@ int main(int argc, char **argv)
|
||||
}
|
||||
|
||||
if (!empty_run) {
|
||||
#ifdef CONFIG_BIGNUM
|
||||
if (load_jscalc) {
|
||||
js_std_eval_binary(ctx, qjsc_qjscalc, qjsc_qjscalc_size, 0);
|
||||
}
|
||||
#endif
|
||||
js_std_add_helpers(ctx, argc - optind, argv + optind);
|
||||
|
||||
/* make 'std' and 'os' visible to non module code */
|
||||
|
28
qjsc.c
28
qjsc.c
@ -492,9 +492,6 @@ int main(int argc, char **argv)
|
||||
int module;
|
||||
OutputTypeEnum output_type;
|
||||
size_t stack_size;
|
||||
#ifdef CONFIG_BIGNUM
|
||||
BOOL bignum_ext = FALSE;
|
||||
#endif
|
||||
namelist_t dynamic_module_list;
|
||||
|
||||
out_filename = NULL;
|
||||
@ -547,13 +544,7 @@ int main(int argc, char **argv)
|
||||
}
|
||||
if (i == countof(feature_list))
|
||||
goto bad_feature;
|
||||
} else
|
||||
#ifdef CONFIG_BIGNUM
|
||||
if (!strcmp(optarg, "bignum")) {
|
||||
bignum_ext = TRUE;
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
} else {
|
||||
bad_feature:
|
||||
fprintf(stderr, "unsupported feature: %s\n", optarg);
|
||||
exit(1);
|
||||
@ -630,14 +621,6 @@ int main(int argc, char **argv)
|
||||
|
||||
rt = JS_NewRuntime();
|
||||
ctx = JS_NewContext(rt);
|
||||
#ifdef CONFIG_BIGNUM
|
||||
if (bignum_ext) {
|
||||
JS_AddIntrinsicBigFloat(ctx);
|
||||
JS_AddIntrinsicBigDecimal(ctx);
|
||||
JS_AddIntrinsicOperators(ctx);
|
||||
JS_EnableBignumExt(ctx, TRUE);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* loader for ES6 modules */
|
||||
JS_SetModuleLoaderFunc(rt, NULL, jsc_module_loader, NULL);
|
||||
@ -686,15 +669,6 @@ int main(int argc, char **argv)
|
||||
feature_list[i].init_name);
|
||||
}
|
||||
}
|
||||
#ifdef CONFIG_BIGNUM
|
||||
if (bignum_ext) {
|
||||
fprintf(fo,
|
||||
" JS_AddIntrinsicBigFloat(ctx);\n"
|
||||
" JS_AddIntrinsicBigDecimal(ctx);\n"
|
||||
" JS_AddIntrinsicOperators(ctx);\n"
|
||||
" JS_EnableBignumExt(ctx, 1);\n");
|
||||
}
|
||||
#endif
|
||||
/* add the precompiled modules (XXX: could modify the module
|
||||
loader instead) */
|
||||
for(i = 0; i < init_module_list.count; i++) {
|
||||
|
2657
qjscalc.js
2657
qjscalc.js
File diff suppressed because it is too large
Load Diff
@ -172,13 +172,6 @@ DEF(status, "status")
|
||||
DEF(reason, "reason")
|
||||
DEF(globalThis, "globalThis")
|
||||
DEF(bigint, "bigint")
|
||||
#ifdef CONFIG_BIGNUM
|
||||
DEF(bigfloat, "bigfloat")
|
||||
DEF(bigdecimal, "bigdecimal")
|
||||
DEF(roundingMode, "roundingMode")
|
||||
DEF(maximumSignificantDigits, "maximumSignificantDigits")
|
||||
DEF(maximumFractionDigits, "maximumFractionDigits")
|
||||
#endif
|
||||
/* the following 3 atoms are only used with CONFIG_ATOMICS */
|
||||
DEF(not_equal, "not-equal")
|
||||
DEF(timed_out, "timed-out")
|
||||
@ -217,13 +210,6 @@ DEF(Float32Array, "Float32Array")
|
||||
DEF(Float64Array, "Float64Array")
|
||||
DEF(DataView, "DataView")
|
||||
DEF(BigInt, "BigInt")
|
||||
#ifdef CONFIG_BIGNUM
|
||||
DEF(BigFloat, "BigFloat")
|
||||
DEF(BigFloatEnv, "BigFloatEnv")
|
||||
DEF(BigDecimal, "BigDecimal")
|
||||
DEF(OperatorSet, "OperatorSet")
|
||||
DEF(Operators, "Operators")
|
||||
#endif
|
||||
DEF(Map, "Map")
|
||||
DEF(Set, "Set") /* Map + 1 */
|
||||
DEF(WeakMap, "WeakMap") /* Map + 2 */
|
||||
@ -266,8 +252,5 @@ DEF(Symbol_hasInstance, "Symbol.hasInstance")
|
||||
DEF(Symbol_species, "Symbol.species")
|
||||
DEF(Symbol_unscopables, "Symbol.unscopables")
|
||||
DEF(Symbol_asyncIterator, "Symbol.asyncIterator")
|
||||
#ifdef CONFIG_BIGNUM
|
||||
DEF(Symbol_operatorSet, "Symbol.operatorSet")
|
||||
#endif
|
||||
|
||||
#endif /* DEF */
|
||||
|
@ -258,10 +258,7 @@ DEF( xor, 1, 2, 1, none)
|
||||
DEF( or, 1, 2, 1, none)
|
||||
DEF(is_undefined_or_null, 1, 1, 1, none)
|
||||
DEF( private_in, 1, 2, 1, none)
|
||||
#ifdef CONFIG_BIGNUM
|
||||
DEF( mul_pow10, 1, 2, 1, none)
|
||||
DEF( math_mod, 1, 2, 1, none)
|
||||
#endif
|
||||
DEF(push_bigint_i32, 5, 0, 1, i32)
|
||||
/* must be the last non short and non temporary opcode */
|
||||
DEF( nop, 1, 0, 0, none)
|
||||
|
||||
|
39
quickjs.h
39
quickjs.h
@ -64,6 +64,14 @@ typedef uint32_t JSAtom;
|
||||
#define JS_NAN_BOXING
|
||||
#endif
|
||||
|
||||
#if defined(__SIZEOF_INT128__) && (INTPTR_MAX >= INT64_MAX)
|
||||
#define JS_LIMB_BITS 64
|
||||
#else
|
||||
#define JS_LIMB_BITS 32
|
||||
#endif
|
||||
|
||||
#define JS_SHORT_BIG_INT_BITS JS_LIMB_BITS
|
||||
|
||||
enum {
|
||||
/* all tags with a reference count are negative */
|
||||
JS_TAG_FIRST = -11, /* first negative tag */
|
||||
@ -83,7 +91,8 @@ enum {
|
||||
JS_TAG_UNINITIALIZED = 4,
|
||||
JS_TAG_CATCH_OFFSET = 5,
|
||||
JS_TAG_EXCEPTION = 6,
|
||||
JS_TAG_FLOAT64 = 7,
|
||||
JS_TAG_SHORT_BIG_INT = 7,
|
||||
JS_TAG_FLOAT64 = 8,
|
||||
/* any larger tag is FLOAT64 if JS_NAN_BOXING */
|
||||
};
|
||||
|
||||
@ -108,6 +117,7 @@ typedef const struct __JSValue *JSValueConst;
|
||||
#define JS_VALUE_GET_INT(v) (int)((intptr_t)(v) >> 4)
|
||||
#define JS_VALUE_GET_BOOL(v) JS_VALUE_GET_INT(v)
|
||||
#define JS_VALUE_GET_FLOAT64(v) (double)JS_VALUE_GET_INT(v)
|
||||
#define JS_VALUE_GET_SHORT_BIG_INT(v) JS_VALUE_GET_INT(v)
|
||||
#define JS_VALUE_GET_PTR(v) (void *)((intptr_t)(v) & ~0xf)
|
||||
|
||||
#define JS_MKVAL(tag, val) (JSValue)(intptr_t)(((val) << 4) | (tag))
|
||||
@ -127,6 +137,11 @@ static inline JS_BOOL JS_VALUE_IS_NAN(JSValue v)
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline JSValue __JS_NewShortBigInt(JSContext *ctx, int32_t d)
|
||||
{
|
||||
return JS_MKVAL(JS_TAG_SHORT_BIG_INT, d);
|
||||
}
|
||||
|
||||
#elif defined(JS_NAN_BOXING)
|
||||
|
||||
typedef uint64_t JSValue;
|
||||
@ -136,6 +151,7 @@ typedef uint64_t JSValue;
|
||||
#define JS_VALUE_GET_TAG(v) (int)((v) >> 32)
|
||||
#define JS_VALUE_GET_INT(v) (int)(v)
|
||||
#define JS_VALUE_GET_BOOL(v) (int)(v)
|
||||
#define JS_VALUE_GET_SHORT_BIG_INT(v) (int)(v)
|
||||
#define JS_VALUE_GET_PTR(v) (void *)(intptr_t)(v)
|
||||
|
||||
#define JS_MKVAL(tag, val) (((uint64_t)(tag) << 32) | (uint32_t)(val))
|
||||
@ -192,12 +208,22 @@ static inline JS_BOOL JS_VALUE_IS_NAN(JSValue v)
|
||||
return tag == (JS_NAN >> 32);
|
||||
}
|
||||
|
||||
static inline JSValue __JS_NewShortBigInt(JSContext *ctx, int32_t d)
|
||||
{
|
||||
return JS_MKVAL(JS_TAG_SHORT_BIG_INT, d);
|
||||
}
|
||||
|
||||
#else /* !JS_NAN_BOXING */
|
||||
|
||||
typedef union JSValueUnion {
|
||||
int32_t int32;
|
||||
double float64;
|
||||
void *ptr;
|
||||
#if JS_SHORT_BIG_INT_BITS == 32
|
||||
int32_t short_big_int;
|
||||
#else
|
||||
int64_t short_big_int;
|
||||
#endif
|
||||
} JSValueUnion;
|
||||
|
||||
typedef struct JSValue {
|
||||
@ -213,6 +239,7 @@ typedef struct JSValue {
|
||||
#define JS_VALUE_GET_INT(v) ((v).u.int32)
|
||||
#define JS_VALUE_GET_BOOL(v) ((v).u.int32)
|
||||
#define JS_VALUE_GET_FLOAT64(v) ((v).u.float64)
|
||||
#define JS_VALUE_GET_SHORT_BIG_INT(v) ((v).u.short_big_int)
|
||||
#define JS_VALUE_GET_PTR(v) ((v).u.ptr)
|
||||
|
||||
#define JS_MKVAL(tag, val) (JSValue){ (JSValueUnion){ .int32 = val }, tag }
|
||||
@ -242,6 +269,14 @@ static inline JS_BOOL JS_VALUE_IS_NAN(JSValue v)
|
||||
return (u.u64 & 0x7fffffffffffffff) > 0x7ff0000000000000;
|
||||
}
|
||||
|
||||
static inline JSValue __JS_NewShortBigInt(JSContext *ctx, int64_t d)
|
||||
{
|
||||
JSValue v;
|
||||
v.tag = JS_TAG_SHORT_BIG_INT;
|
||||
v.u.short_big_int = d;
|
||||
return v;
|
||||
}
|
||||
|
||||
#endif /* !JS_NAN_BOXING */
|
||||
|
||||
#define JS_VALUE_IS_BOTH_INT(v1, v2) ((JS_VALUE_GET_TAG(v1) | JS_VALUE_GET_TAG(v2)) == 0)
|
||||
@ -576,7 +611,7 @@ static inline JS_BOOL JS_IsNumber(JSValueConst v)
|
||||
static inline JS_BOOL JS_IsBigInt(JSContext *ctx, JSValueConst v)
|
||||
{
|
||||
int tag = JS_VALUE_GET_TAG(v);
|
||||
return tag == JS_TAG_BIG_INT;
|
||||
return tag == JS_TAG_BIG_INT || tag == JS_TAG_SHORT_BIG_INT;
|
||||
}
|
||||
|
||||
static inline JS_BOOL JS_IsBigFloat(JSValueConst v)
|
||||
|
@ -687,29 +687,6 @@ function float_arith(n)
|
||||
return n * 1000;
|
||||
}
|
||||
|
||||
function bigfloat_arith(n)
|
||||
{
|
||||
var i, j, sum, a, incr, a0;
|
||||
global_res = 0;
|
||||
a0 = BigFloat("0.1");
|
||||
incr = BigFloat("1.1");
|
||||
for(j = 0; j < n; j++) {
|
||||
sum = 0;
|
||||
a = a0;
|
||||
for(i = 0; i < 1000; i++) {
|
||||
sum += a * a;
|
||||
a += incr;
|
||||
}
|
||||
global_res += sum;
|
||||
}
|
||||
return n * 1000;
|
||||
}
|
||||
|
||||
function float256_arith(n)
|
||||
{
|
||||
return BigFloatEnv.setPrec(bigfloat_arith.bind(null, n), 237, 19);
|
||||
}
|
||||
|
||||
function bigint_arith(n, bits)
|
||||
{
|
||||
var i, j, sum, a, incr, a0, sum0;
|
||||
@ -728,6 +705,11 @@ function bigint_arith(n, bits)
|
||||
return n * 1000;
|
||||
}
|
||||
|
||||
function bigint32_arith(n)
|
||||
{
|
||||
return bigint_arith(n, 32);
|
||||
}
|
||||
|
||||
function bigint64_arith(n)
|
||||
{
|
||||
return bigint_arith(n, 64);
|
||||
@ -1231,13 +1213,10 @@ function main(argc, argv, g)
|
||||
|
||||
if (typeof BigInt === "function") {
|
||||
/* BigInt test */
|
||||
test_list.push(bigint32_arith);
|
||||
test_list.push(bigint64_arith);
|
||||
test_list.push(bigint256_arith);
|
||||
}
|
||||
if (typeof BigFloat === "function") {
|
||||
/* BigFloat test */
|
||||
test_list.push(float256_arith);
|
||||
}
|
||||
test_list.push(sort_bench);
|
||||
|
||||
for (i = 1; i < argc;) {
|
||||
|
@ -1,279 +0,0 @@
|
||||
"use strict";
|
||||
|
||||
function assert(actual, expected, message) {
|
||||
if (arguments.length == 1)
|
||||
expected = true;
|
||||
|
||||
if (actual === expected)
|
||||
return;
|
||||
|
||||
if (actual !== null && expected !== null
|
||||
&& typeof actual == 'object' && typeof expected == 'object'
|
||||
&& actual.toString() === expected.toString())
|
||||
return;
|
||||
|
||||
throw Error("assertion failed: got |" + actual + "|" +
|
||||
", expected |" + expected + "|" +
|
||||
(message ? " (" + message + ")" : ""));
|
||||
}
|
||||
|
||||
function assertThrows(err, func)
|
||||
{
|
||||
var ex;
|
||||
ex = false;
|
||||
try {
|
||||
func();
|
||||
} catch(e) {
|
||||
ex = true;
|
||||
assert(e instanceof err);
|
||||
}
|
||||
assert(ex, true, "exception expected");
|
||||
}
|
||||
|
||||
// load more elaborate version of assert if available
|
||||
try { __loadScript("test_assert.js"); } catch(e) {}
|
||||
|
||||
/*----------------*/
|
||||
|
||||
/* a must be < b */
|
||||
function test_less(a, b)
|
||||
{
|
||||
assert(a < b);
|
||||
assert(!(b < a));
|
||||
assert(a <= b);
|
||||
assert(!(b <= a));
|
||||
assert(b > a);
|
||||
assert(!(a > b));
|
||||
assert(b >= a);
|
||||
assert(!(a >= b));
|
||||
assert(a != b);
|
||||
assert(!(a == b));
|
||||
}
|
||||
|
||||
/* a must be numerically equal to b */
|
||||
function test_eq(a, b)
|
||||
{
|
||||
assert(a == b);
|
||||
assert(b == a);
|
||||
assert(!(a != b));
|
||||
assert(!(b != a));
|
||||
assert(a <= b);
|
||||
assert(b <= a);
|
||||
assert(!(a < b));
|
||||
assert(a >= b);
|
||||
assert(b >= a);
|
||||
assert(!(a > b));
|
||||
}
|
||||
|
||||
function test_divrem(div1, a, b, q)
|
||||
{
|
||||
var div, divrem, t;
|
||||
div = BigInt[div1];
|
||||
divrem = BigInt[div1 + "rem"];
|
||||
assert(div(a, b) == q);
|
||||
t = divrem(a, b);
|
||||
assert(t[0] == q);
|
||||
assert(a == b * q + t[1]);
|
||||
}
|
||||
|
||||
function test_idiv1(div, a, b, r)
|
||||
{
|
||||
test_divrem(div, a, b, r[0]);
|
||||
test_divrem(div, -a, b, r[1]);
|
||||
test_divrem(div, a, -b, r[2]);
|
||||
test_divrem(div, -a, -b, r[3]);
|
||||
}
|
||||
|
||||
/* QuickJS BigInt extensions */
|
||||
function test_bigint_ext()
|
||||
{
|
||||
var r;
|
||||
assert(BigInt.floorLog2(0n) === -1n);
|
||||
assert(BigInt.floorLog2(7n) === 2n);
|
||||
|
||||
assert(BigInt.sqrt(0xffffffc000000000000000n) === 17592185913343n);
|
||||
r = BigInt.sqrtrem(0xffffffc000000000000000n);
|
||||
assert(r[0] === 17592185913343n);
|
||||
assert(r[1] === 35167191957503n);
|
||||
|
||||
test_idiv1("tdiv", 3n, 2n, [1n, -1n, -1n, 1n]);
|
||||
test_idiv1("fdiv", 3n, 2n, [1n, -2n, -2n, 1n]);
|
||||
test_idiv1("cdiv", 3n, 2n, [2n, -1n, -1n, 2n]);
|
||||
test_idiv1("ediv", 3n, 2n, [1n, -2n, -1n, 2n]);
|
||||
}
|
||||
|
||||
function test_bigfloat()
|
||||
{
|
||||
var e, a, b, sqrt2;
|
||||
|
||||
assert(typeof 1n === "bigint");
|
||||
assert(typeof 1l === "bigfloat");
|
||||
assert(1 == 1.0l);
|
||||
assert(1 !== 1.0l);
|
||||
|
||||
test_less(2l, 3l);
|
||||
test_eq(3l, 3l);
|
||||
|
||||
test_less(2, 3l);
|
||||
test_eq(3, 3l);
|
||||
|
||||
test_less(2.1, 3l);
|
||||
test_eq(Math.sqrt(9), 3l);
|
||||
|
||||
test_less(2n, 3l);
|
||||
test_eq(3n, 3l);
|
||||
|
||||
e = new BigFloatEnv(128);
|
||||
assert(e.prec == 128);
|
||||
a = BigFloat.sqrt(2l, e);
|
||||
assert(a === BigFloat.parseFloat("0x1.6a09e667f3bcc908b2fb1366ea957d3e", 0, e));
|
||||
assert(e.inexact === true);
|
||||
assert(BigFloat.fpRound(a) == 0x1.6a09e667f3bcc908b2fb1366ea95l);
|
||||
|
||||
b = BigFloatEnv.setPrec(BigFloat.sqrt.bind(null, 2), 128);
|
||||
assert(a === b);
|
||||
|
||||
assert(BigFloat.isNaN(BigFloat(NaN)));
|
||||
assert(BigFloat.isFinite(1l));
|
||||
assert(!BigFloat.isFinite(1l/0l));
|
||||
|
||||
assert(BigFloat.abs(-3l) === 3l);
|
||||
assert(BigFloat.sign(-3l) === -1l);
|
||||
|
||||
assert(BigFloat.exp(0.2l) === 1.2214027581601698339210719946396742l);
|
||||
assert(BigFloat.log(3l) === 1.0986122886681096913952452369225256l);
|
||||
assert(BigFloat.pow(2.1l, 1.6l) === 3.277561666451861947162828744873745l);
|
||||
|
||||
assert(BigFloat.sin(-1l) === -0.841470984807896506652502321630299l);
|
||||
assert(BigFloat.cos(1l) === 0.5403023058681397174009366074429766l);
|
||||
assert(BigFloat.tan(0.1l) === 0.10033467208545054505808004578111154l);
|
||||
|
||||
assert(BigFloat.asin(0.3l) === 0.30469265401539750797200296122752915l);
|
||||
assert(BigFloat.acos(0.4l) === 1.1592794807274085998465837940224159l);
|
||||
assert(BigFloat.atan(0.7l) === 0.610725964389208616543758876490236l);
|
||||
assert(BigFloat.atan2(7.1l, -5.1l) === 2.1937053809751415549388104628759813l);
|
||||
|
||||
assert(BigFloat.floor(2.5l) === 2l);
|
||||
assert(BigFloat.ceil(2.5l) === 3l);
|
||||
assert(BigFloat.trunc(-2.5l) === -2l);
|
||||
assert(BigFloat.round(2.5l) === 3l);
|
||||
|
||||
assert(BigFloat.fmod(3l,2l) === 1l);
|
||||
assert(BigFloat.remainder(3l,2l) === -1l);
|
||||
|
||||
/* string conversion */
|
||||
assert((1234.125l).toString(), "1234.125");
|
||||
assert((1234.125l).toFixed(2), "1234.13");
|
||||
assert((1234.125l).toFixed(2, "down"), "1234.12");
|
||||
assert((1234.125l).toExponential(), "1.234125e+3");
|
||||
assert((1234.125l).toExponential(5), "1.23413e+3");
|
||||
assert((1234.125l).toExponential(5, BigFloatEnv.RNDZ), "1.23412e+3");
|
||||
assert((1234.125l).toPrecision(6), "1234.13");
|
||||
assert((1234.125l).toPrecision(6, BigFloatEnv.RNDZ), "1234.12");
|
||||
|
||||
/* string conversion with binary base */
|
||||
assert((0x123.438l).toString(16), "123.438");
|
||||
assert((0x323.438l).toString(16), "323.438");
|
||||
assert((0x723.438l).toString(16), "723.438");
|
||||
assert((0xf23.438l).toString(16), "f23.438");
|
||||
assert((0x123.438l).toFixed(2, BigFloatEnv.RNDNA, 16), "123.44");
|
||||
assert((0x323.438l).toFixed(2, BigFloatEnv.RNDNA, 16), "323.44");
|
||||
assert((0x723.438l).toFixed(2, BigFloatEnv.RNDNA, 16), "723.44");
|
||||
assert((0xf23.438l).toFixed(2, BigFloatEnv.RNDNA, 16), "f23.44");
|
||||
assert((0x0.0000438l).toFixed(6, BigFloatEnv.RNDNA, 16), "0.000044");
|
||||
assert((0x1230000000l).toFixed(1, BigFloatEnv.RNDNA, 16), "1230000000.0");
|
||||
assert((0x123.438l).toPrecision(5, BigFloatEnv.RNDNA, 16), "123.44");
|
||||
assert((0x123.438l).toPrecision(5, BigFloatEnv.RNDZ, 16), "123.43");
|
||||
assert((0x323.438l).toPrecision(5, BigFloatEnv.RNDNA, 16), "323.44");
|
||||
assert((0x723.438l).toPrecision(5, BigFloatEnv.RNDNA, 16), "723.44");
|
||||
assert((-0xf23.438l).toPrecision(5, BigFloatEnv.RNDD, 16), "-f23.44");
|
||||
assert((0x123.438l).toExponential(4, BigFloatEnv.RNDNA, 16), "1.2344p+8");
|
||||
}
|
||||
|
||||
function test_bigdecimal()
|
||||
{
|
||||
assert(1m === 1m);
|
||||
assert(1m !== 2m);
|
||||
test_less(1m, 2m);
|
||||
test_eq(2m, 2m);
|
||||
|
||||
test_less(1, 2m);
|
||||
test_eq(2, 2m);
|
||||
|
||||
test_less(1.1, 2m);
|
||||
test_eq(Math.sqrt(4), 2m);
|
||||
|
||||
test_less(2n, 3m);
|
||||
test_eq(3n, 3m);
|
||||
|
||||
assert(BigDecimal("1234.1") === 1234.1m);
|
||||
assert(BigDecimal(" 1234.1") === 1234.1m);
|
||||
assert(BigDecimal(" 1234.1 ") === 1234.1m);
|
||||
|
||||
assert(BigDecimal(0.1) === 0.1m);
|
||||
assert(BigDecimal(123) === 123m);
|
||||
assert(BigDecimal(true) === 1m);
|
||||
|
||||
assert(123m + 1m === 124m);
|
||||
assert(123m - 1m === 122m);
|
||||
|
||||
assert(3.2m * 3m === 9.6m);
|
||||
assert(10m / 2m === 5m);
|
||||
assertThrows(RangeError, () => { 10m / 3m } );
|
||||
|
||||
assert(10m % 3m === 1m);
|
||||
assert(-10m % 3m === -1m);
|
||||
|
||||
assert(1234.5m ** 3m === 1881365963.625m);
|
||||
assertThrows(RangeError, () => { 2m ** 3.1m } );
|
||||
assertThrows(RangeError, () => { 2m ** -3m } );
|
||||
|
||||
assert(BigDecimal.sqrt(2m,
|
||||
{ roundingMode: "half-even",
|
||||
maximumSignificantDigits: 4 }) === 1.414m);
|
||||
assert(BigDecimal.sqrt(101m,
|
||||
{ roundingMode: "half-even",
|
||||
maximumFractionDigits: 3 }) === 10.050m);
|
||||
assert(BigDecimal.sqrt(0.002m,
|
||||
{ roundingMode: "half-even",
|
||||
maximumFractionDigits: 3 }) === 0.045m);
|
||||
|
||||
assert(BigDecimal.round(3.14159m,
|
||||
{ roundingMode: "half-even",
|
||||
maximumFractionDigits: 3 }) === 3.142m);
|
||||
|
||||
assert(BigDecimal.add(3.14159m, 0.31212m,
|
||||
{ roundingMode: "half-even",
|
||||
maximumFractionDigits: 2 }) === 3.45m);
|
||||
assert(BigDecimal.sub(3.14159m, 0.31212m,
|
||||
{ roundingMode: "down",
|
||||
maximumFractionDigits: 2 }) === 2.82m);
|
||||
assert(BigDecimal.mul(3.14159m, 0.31212m,
|
||||
{ roundingMode: "half-even",
|
||||
maximumFractionDigits: 3 }) === 0.981m);
|
||||
assert(BigDecimal.mod(3.14159m, 0.31211m,
|
||||
{ roundingMode: "half-even",
|
||||
maximumFractionDigits: 4 }) === 0.0205m);
|
||||
assert(BigDecimal.div(20m, 3m,
|
||||
{ roundingMode: "half-even",
|
||||
maximumSignificantDigits: 3 }) === 6.67m);
|
||||
assert(BigDecimal.div(20m, 3m,
|
||||
{ roundingMode: "half-even",
|
||||
maximumFractionDigits: 50 }) ===
|
||||
6.66666666666666666666666666666666666666666666666667m);
|
||||
|
||||
/* string conversion */
|
||||
assert((1234.125m).toString(), "1234.125");
|
||||
assert((1234.125m).toFixed(2), "1234.13");
|
||||
assert((1234.125m).toFixed(2, "down"), "1234.12");
|
||||
assert((1234.125m).toExponential(), "1.234125e+3");
|
||||
assert((1234.125m).toExponential(5), "1.23413e+3");
|
||||
assert((1234.125m).toExponential(5, "down"), "1.23412e+3");
|
||||
assert((1234.125m).toPrecision(6), "1234.13");
|
||||
assert((1234.125m).toPrecision(6, "down"), "1234.12");
|
||||
assert((-1234.125m).toPrecision(6, "floor"), "-1234.13");
|
||||
}
|
||||
|
||||
test_bigint_ext();
|
||||
test_bigfloat();
|
||||
test_bigdecimal();
|
249
tests/test_bigint.js
Normal file
249
tests/test_bigint.js
Normal file
@ -0,0 +1,249 @@
|
||||
"use strict";
|
||||
|
||||
function assert(actual, expected, message) {
|
||||
if (arguments.length == 1)
|
||||
expected = true;
|
||||
|
||||
if (actual === expected)
|
||||
return;
|
||||
|
||||
if (actual !== null && expected !== null
|
||||
&& typeof actual == 'object' && typeof expected == 'object'
|
||||
&& actual.toString() === expected.toString())
|
||||
return;
|
||||
|
||||
throw Error("assertion failed: got |" + actual + "|" +
|
||||
", expected |" + expected + "|" +
|
||||
(message ? " (" + message + ")" : ""));
|
||||
}
|
||||
|
||||
function assertThrows(err, func)
|
||||
{
|
||||
var ex;
|
||||
ex = false;
|
||||
try {
|
||||
func();
|
||||
} catch(e) {
|
||||
ex = true;
|
||||
assert(e instanceof err);
|
||||
}
|
||||
assert(ex, true, "exception expected");
|
||||
}
|
||||
|
||||
// load more elaborate version of assert if available
|
||||
try { __loadScript("test_assert.js"); } catch(e) {}
|
||||
|
||||
/*----------------*/
|
||||
|
||||
function bigint_pow(a, n)
|
||||
{
|
||||
var r, i;
|
||||
r = 1n;
|
||||
for(i = 0n; i < n; i++)
|
||||
r *= a;
|
||||
return r;
|
||||
}
|
||||
|
||||
/* a must be < b */
|
||||
function test_less(a, b)
|
||||
{
|
||||
assert(a < b);
|
||||
assert(!(b < a));
|
||||
assert(a <= b);
|
||||
assert(!(b <= a));
|
||||
assert(b > a);
|
||||
assert(!(a > b));
|
||||
assert(b >= a);
|
||||
assert(!(a >= b));
|
||||
assert(a != b);
|
||||
assert(!(a == b));
|
||||
}
|
||||
|
||||
/* a must be numerically equal to b */
|
||||
function test_eq(a, b)
|
||||
{
|
||||
assert(a == b);
|
||||
assert(b == a);
|
||||
assert(!(a != b));
|
||||
assert(!(b != a));
|
||||
assert(a <= b);
|
||||
assert(b <= a);
|
||||
assert(!(a < b));
|
||||
assert(a >= b);
|
||||
assert(b >= a);
|
||||
assert(!(a > b));
|
||||
}
|
||||
|
||||
function test_bigint1()
|
||||
{
|
||||
var a, r;
|
||||
|
||||
test_less(2n, 3n);
|
||||
test_eq(3n, 3n);
|
||||
|
||||
test_less(2, 3n);
|
||||
test_eq(3, 3n);
|
||||
|
||||
test_less(2.1, 3n);
|
||||
test_eq(Math.sqrt(4), 2n);
|
||||
|
||||
a = bigint_pow(3n, 100n);
|
||||
assert((a - 1n) != a);
|
||||
assert(a == 515377520732011331036461129765621272702107522001n);
|
||||
assert(a == 0x5a4653ca673768565b41f775d6947d55cf3813d1n);
|
||||
|
||||
r = 1n << 31n;
|
||||
assert(r, 2147483648n, "1 << 31n === 2147483648n");
|
||||
|
||||
r = 1n << 32n;
|
||||
assert(r, 4294967296n, "1 << 32n === 4294967296n");
|
||||
}
|
||||
|
||||
function test_bigint2()
|
||||
{
|
||||
assert(BigInt(""), 0n);
|
||||
assert(BigInt(" 123"), 123n);
|
||||
assert(BigInt(" 123 "), 123n);
|
||||
assertThrows(SyntaxError, () => { BigInt("+") } );
|
||||
assertThrows(SyntaxError, () => { BigInt("-") } );
|
||||
assertThrows(SyntaxError, () => { BigInt("\x00a") } );
|
||||
assertThrows(SyntaxError, () => { BigInt(" 123 r") } );
|
||||
}
|
||||
|
||||
function test_bigint3()
|
||||
{
|
||||
assert(Number(0xffffffffffffffffn), 18446744073709552000);
|
||||
assert(Number(-0xffffffffffffffffn), -18446744073709552000);
|
||||
assert(100000000000000000000n == 1e20, true);
|
||||
assert(100000000000000000001n == 1e20, false);
|
||||
assert((1n << 100n).toString(10), "1267650600228229401496703205376");
|
||||
assert((-1n << 100n).toString(36), "-3ewfdnca0n6ld1ggvfgg");
|
||||
assert((1n << 100n).toString(8), "2000000000000000000000000000000000");
|
||||
|
||||
assert(0x5a4653ca673768565b41f775n << 78n, 8443945299673273647701379149826607537748959488376832n);
|
||||
assert(-0x5a4653ca673768565b41f775n << 78n, -8443945299673273647701379149826607537748959488376832n);
|
||||
assert(0x5a4653ca673768565b41f775n >> 78n, 92441n);
|
||||
assert(-0x5a4653ca673768565b41f775n >> 78n, -92442n);
|
||||
|
||||
assert(~0x5a653ca6n, -1516584103n);
|
||||
assert(0x5a463ca6n | 0x67376856n, 2138537206n);
|
||||
assert(0x5a463ca6n & 0x67376856n, 1107699718n);
|
||||
assert(0x5a463ca6n ^ 0x67376856n, 1030837488n);
|
||||
|
||||
assert(3213213213213213432453243n / 123434343439n, 26031760073331n);
|
||||
assert(-3213213213213213432453243n / 123434343439n, -26031760073331n);
|
||||
assert(-3213213213213213432453243n % -123434343439n, -26953727934n);
|
||||
assert(3213213213213213432453243n % 123434343439n, 26953727934n);
|
||||
|
||||
assert((-2n) ** 127n, -170141183460469231731687303715884105728n);
|
||||
assert((2n) ** 127n, 170141183460469231731687303715884105728n);
|
||||
assert((-256n) ** 11n, -309485009821345068724781056n);
|
||||
assert((7n) ** 20n, 79792266297612001n);
|
||||
}
|
||||
|
||||
/* pi computation */
|
||||
|
||||
/* return floor(log2(a)) for a > 0 and 0 for a = 0 */
|
||||
function floor_log2(a)
|
||||
{
|
||||
var k_max, a1, k, i;
|
||||
k_max = 0n;
|
||||
while ((a >> (2n ** k_max)) != 0n) {
|
||||
k_max++;
|
||||
}
|
||||
k = 0n;
|
||||
a1 = a;
|
||||
for(i = k_max - 1n; i >= 0n; i--) {
|
||||
a1 = a >> (2n ** i);
|
||||
if (a1 != 0n) {
|
||||
a = a1;
|
||||
k |= (1n << i);
|
||||
}
|
||||
}
|
||||
return k;
|
||||
}
|
||||
|
||||
/* return ceil(log2(a)) for a > 0 */
|
||||
function ceil_log2(a)
|
||||
{
|
||||
return floor_log2(a - 1n) + 1n;
|
||||
}
|
||||
|
||||
/* return floor(sqrt(a)) (not efficient but simple) */
|
||||
function int_sqrt(a)
|
||||
{
|
||||
var l, u, s;
|
||||
if (a == 0n)
|
||||
return a;
|
||||
l = ceil_log2(a);
|
||||
u = 1n << ((l + 1n) / 2n);
|
||||
/* u >= floor(sqrt(a)) */
|
||||
for(;;) {
|
||||
s = u;
|
||||
u = ((a / s) + s) / 2n;
|
||||
if (u >= s)
|
||||
break;
|
||||
}
|
||||
return s;
|
||||
}
|
||||
|
||||
/* return pi * 2**prec */
|
||||
function calc_pi(prec) {
|
||||
const CHUD_A = 13591409n;
|
||||
const CHUD_B = 545140134n;
|
||||
const CHUD_C = 640320n;
|
||||
const CHUD_C3 = 10939058860032000n; /* C^3/24 */
|
||||
const CHUD_BITS_PER_TERM = 47.11041313821584202247; /* log2(C/12)*3 */
|
||||
|
||||
/* return [P, Q, G] */
|
||||
function chud_bs(a, b, need_G) {
|
||||
var c, P, Q, G, P1, Q1, G1, P2, Q2, G2;
|
||||
if (a == (b - 1n)) {
|
||||
G = (2n * b - 1n) * (6n * b - 1n) * (6n * b - 5n);
|
||||
P = G * (CHUD_B * b + CHUD_A);
|
||||
if (b & 1n)
|
||||
P = -P;
|
||||
Q = b * b * b * CHUD_C3;
|
||||
} else {
|
||||
c = (a + b) >> 1n;
|
||||
[P1, Q1, G1] = chud_bs(a, c, true);
|
||||
[P2, Q2, G2] = chud_bs(c, b, need_G);
|
||||
P = P1 * Q2 + P2 * G1;
|
||||
Q = Q1 * Q2;
|
||||
if (need_G)
|
||||
G = G1 * G2;
|
||||
else
|
||||
G = 0n;
|
||||
}
|
||||
return [P, Q, G];
|
||||
}
|
||||
|
||||
var n, P, Q, G;
|
||||
/* number of serie terms */
|
||||
n = BigInt(Math.ceil(Number(prec) / CHUD_BITS_PER_TERM)) + 10n;
|
||||
[P, Q, G] = chud_bs(0n, n, false);
|
||||
Q = (CHUD_C / 12n) * (Q << prec) / (P + Q * CHUD_A);
|
||||
G = int_sqrt(CHUD_C << (2n * prec));
|
||||
return (Q * G) >> prec;
|
||||
}
|
||||
|
||||
function compute_pi(n_digits) {
|
||||
var r, n_digits, n_bits, out;
|
||||
/* we add more bits to reduce the probability of bad rounding for
|
||||
the last digits */
|
||||
n_bits = BigInt(Math.ceil(n_digits * Math.log2(10))) + 32n;
|
||||
r = calc_pi(n_bits);
|
||||
r = ((10n ** BigInt(n_digits)) * r) >> n_bits;
|
||||
out = r.toString();
|
||||
return out[0] + "." + out.slice(1);
|
||||
}
|
||||
|
||||
function test_pi()
|
||||
{
|
||||
assert(compute_pi(2000), "3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196442881097566593344612847564823378678316527120190914564856692346034861045432664821339360726024914127372458700660631558817488152092096282925409171536436789259036001133053054882046652138414695194151160943305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912983367336244065664308602139494639522473719070217986094370277053921717629317675238467481846766940513200056812714526356082778577134275778960917363717872146844090122495343014654958537105079227968925892354201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859502445945534690830264252230825334468503526193118817101000313783875288658753320838142061717766914730359825349042875546873115956286388235378759375195778185778053217122680661300192787661119590921642019893809525720106548586327886593615338182796823030195203530185296899577362259941389124972177528347913151557485724245415069595082953311686172785588907509838175463746493931925506040092770167113900984882401285836160356370766010471018194295559619894676783744944825537977472684710404753464620804668425906949129331367702898915210475216205696602405803815019351125338243003558764024749647326391419927260426992279678235478163600934172164121992458631503028618297455570674983850549458858692699569092721079750930295532116534498720275596023648066549911988183479775356636980742654252786255181841757467289097777279380008164706001614524919217321721477235014144197356854816136115735255213347574184946843852332390739414333454776241686251898356948556209921922218427255025425688767179049460165346680498862723279178608578438382796797668145410095388378636095068006422512520511739298489608412848862694560424196528502221066118630674427862203919494504712371378696095636437191728746776465757396241389086583264599581339047802759009");
|
||||
}
|
||||
|
||||
test_bigint1();
|
||||
test_bigint2();
|
||||
test_bigint3();
|
||||
test_pi();
|
@ -1,114 +0,0 @@
|
||||
"use strict";
|
||||
|
||||
function assert(actual, expected, message) {
|
||||
if (arguments.length == 1)
|
||||
expected = true;
|
||||
|
||||
if (actual === expected)
|
||||
return;
|
||||
|
||||
if (actual !== null && expected !== null
|
||||
&& typeof actual == 'object' && typeof expected == 'object'
|
||||
&& actual.toString() === expected.toString())
|
||||
return;
|
||||
|
||||
throw Error("assertion failed: got |" + actual + "|" +
|
||||
", expected |" + expected + "|" +
|
||||
(message ? " (" + message + ")" : ""));
|
||||
}
|
||||
|
||||
function assertThrows(err, func)
|
||||
{
|
||||
var ex;
|
||||
ex = false;
|
||||
try {
|
||||
func();
|
||||
} catch(e) {
|
||||
ex = true;
|
||||
assert(e instanceof err);
|
||||
}
|
||||
assert(ex, true, "exception expected");
|
||||
}
|
||||
|
||||
// load more elaborate version of assert if available
|
||||
try { __loadScript("test_assert.js"); } catch(e) {}
|
||||
|
||||
/*----------------*/
|
||||
|
||||
function bigint_pow(a, n)
|
||||
{
|
||||
var r, i;
|
||||
r = 1n;
|
||||
for(i = 0n; i < n; i++)
|
||||
r *= a;
|
||||
return r;
|
||||
}
|
||||
|
||||
/* a must be < b */
|
||||
function test_less(a, b)
|
||||
{
|
||||
assert(a < b);
|
||||
assert(!(b < a));
|
||||
assert(a <= b);
|
||||
assert(!(b <= a));
|
||||
assert(b > a);
|
||||
assert(!(a > b));
|
||||
assert(b >= a);
|
||||
assert(!(a >= b));
|
||||
assert(a != b);
|
||||
assert(!(a == b));
|
||||
}
|
||||
|
||||
/* a must be numerically equal to b */
|
||||
function test_eq(a, b)
|
||||
{
|
||||
assert(a == b);
|
||||
assert(b == a);
|
||||
assert(!(a != b));
|
||||
assert(!(b != a));
|
||||
assert(a <= b);
|
||||
assert(b <= a);
|
||||
assert(!(a < b));
|
||||
assert(a >= b);
|
||||
assert(b >= a);
|
||||
assert(!(a > b));
|
||||
}
|
||||
|
||||
function test_bigint1()
|
||||
{
|
||||
var a, r;
|
||||
|
||||
test_less(2n, 3n);
|
||||
test_eq(3n, 3n);
|
||||
|
||||
test_less(2, 3n);
|
||||
test_eq(3, 3n);
|
||||
|
||||
test_less(2.1, 3n);
|
||||
test_eq(Math.sqrt(4), 2n);
|
||||
|
||||
a = bigint_pow(3n, 100n);
|
||||
assert((a - 1n) != a);
|
||||
assert(a == 515377520732011331036461129765621272702107522001n);
|
||||
assert(a == 0x5a4653ca673768565b41f775d6947d55cf3813d1n);
|
||||
|
||||
r = 1n << 31n;
|
||||
assert(r, 2147483648n, "1 << 31n === 2147483648n");
|
||||
|
||||
r = 1n << 32n;
|
||||
assert(r, 4294967296n, "1 << 32n === 4294967296n");
|
||||
}
|
||||
|
||||
function test_bigint2()
|
||||
{
|
||||
assert(BigInt(""), 0n);
|
||||
assert(BigInt(" 123"), 123n);
|
||||
assert(BigInt(" 123 "), 123n);
|
||||
assertThrows(SyntaxError, () => { BigInt("+") } );
|
||||
assertThrows(SyntaxError, () => { BigInt("-") } );
|
||||
assertThrows(SyntaxError, () => { BigInt("\x00a") } );
|
||||
assertThrows(SyntaxError, () => { BigInt(" 123 r") } );
|
||||
}
|
||||
|
||||
test_bigint1();
|
||||
test_bigint2();
|
@ -1,207 +0,0 @@
|
||||
"use strict";
|
||||
|
||||
function assert(actual, expected, message) {
|
||||
if (arguments.length == 1)
|
||||
expected = true;
|
||||
|
||||
if (actual === expected)
|
||||
return;
|
||||
|
||||
if (actual !== null && expected !== null
|
||||
&& typeof actual == 'object' && typeof expected == 'object'
|
||||
&& actual.toString() === expected.toString())
|
||||
return;
|
||||
|
||||
throw Error("assertion failed: got |" + actual + "|" +
|
||||
", expected |" + expected + "|" +
|
||||
(message ? " (" + message + ")" : ""));
|
||||
}
|
||||
|
||||
/* operators overloading with Operators.create() */
|
||||
function test_operators_create() {
|
||||
class Vec2
|
||||
{
|
||||
constructor(x, y) {
|
||||
this.x = x;
|
||||
this.y = y;
|
||||
}
|
||||
static mul_scalar(p1, a) {
|
||||
var r = new Vec2();
|
||||
r.x = p1.x * a;
|
||||
r.y = p1.y * a;
|
||||
return r;
|
||||
}
|
||||
toString() {
|
||||
return "Vec2(" + this.x + "," + this.y + ")";
|
||||
}
|
||||
}
|
||||
|
||||
Vec2.prototype[Symbol.operatorSet] = Operators.create(
|
||||
{
|
||||
"+"(p1, p2) {
|
||||
var r = new Vec2();
|
||||
r.x = p1.x + p2.x;
|
||||
r.y = p1.y + p2.y;
|
||||
return r;
|
||||
},
|
||||
"-"(p1, p2) {
|
||||
var r = new Vec2();
|
||||
r.x = p1.x - p2.x;
|
||||
r.y = p1.y - p2.y;
|
||||
return r;
|
||||
},
|
||||
"=="(a, b) {
|
||||
return a.x == b.x && a.y == b.y;
|
||||
},
|
||||
"<"(a, b) {
|
||||
var r;
|
||||
/* lexicographic order */
|
||||
if (a.x == b.x)
|
||||
r = (a.y < b.y);
|
||||
else
|
||||
r = (a.x < b.x);
|
||||
return r;
|
||||
},
|
||||
"++"(a) {
|
||||
var r = new Vec2();
|
||||
r.x = a.x + 1;
|
||||
r.y = a.y + 1;
|
||||
return r;
|
||||
}
|
||||
},
|
||||
{
|
||||
left: Number,
|
||||
"*"(a, b) {
|
||||
return Vec2.mul_scalar(b, a);
|
||||
}
|
||||
},
|
||||
{
|
||||
right: Number,
|
||||
"*"(a, b) {
|
||||
return Vec2.mul_scalar(a, b);
|
||||
}
|
||||
});
|
||||
|
||||
var a = new Vec2(1, 2);
|
||||
var b = new Vec2(3, 4);
|
||||
var r;
|
||||
|
||||
r = a * 2 + 3 * b;
|
||||
assert(r.x === 11 && r.y === 16);
|
||||
assert(a == a, true);
|
||||
assert(a == b, false);
|
||||
assert(a != a, false);
|
||||
assert(a < b, true);
|
||||
assert(a <= b, true);
|
||||
assert(b < a, false);
|
||||
assert(b <= a, false);
|
||||
assert(a <= a, true);
|
||||
assert(a >= a, true);
|
||||
a++;
|
||||
assert(a.x === 2 && a.y === 3);
|
||||
r = ++a;
|
||||
assert(a.x === 3 && a.y === 4);
|
||||
assert(r === a);
|
||||
}
|
||||
|
||||
/* operators overloading thru inheritance */
|
||||
function test_operators()
|
||||
{
|
||||
var Vec2;
|
||||
|
||||
function mul_scalar(p1, a) {
|
||||
var r = new Vec2();
|
||||
r.x = p1.x * a;
|
||||
r.y = p1.y * a;
|
||||
return r;
|
||||
}
|
||||
|
||||
var vec2_ops = Operators({
|
||||
"+"(p1, p2) {
|
||||
var r = new Vec2();
|
||||
r.x = p1.x + p2.x;
|
||||
r.y = p1.y + p2.y;
|
||||
return r;
|
||||
},
|
||||
"-"(p1, p2) {
|
||||
var r = new Vec2();
|
||||
r.x = p1.x - p2.x;
|
||||
r.y = p1.y - p2.y;
|
||||
return r;
|
||||
},
|
||||
"=="(a, b) {
|
||||
return a.x == b.x && a.y == b.y;
|
||||
},
|
||||
"<"(a, b) {
|
||||
var r;
|
||||
/* lexicographic order */
|
||||
if (a.x == b.x)
|
||||
r = (a.y < b.y);
|
||||
else
|
||||
r = (a.x < b.x);
|
||||
return r;
|
||||
},
|
||||
"++"(a) {
|
||||
var r = new Vec2();
|
||||
r.x = a.x + 1;
|
||||
r.y = a.y + 1;
|
||||
return r;
|
||||
}
|
||||
},
|
||||
{
|
||||
left: Number,
|
||||
"*"(a, b) {
|
||||
return mul_scalar(b, a);
|
||||
}
|
||||
},
|
||||
{
|
||||
right: Number,
|
||||
"*"(a, b) {
|
||||
return mul_scalar(a, b);
|
||||
}
|
||||
});
|
||||
|
||||
Vec2 = class Vec2 extends vec2_ops
|
||||
{
|
||||
constructor(x, y) {
|
||||
super();
|
||||
this.x = x;
|
||||
this.y = y;
|
||||
}
|
||||
toString() {
|
||||
return "Vec2(" + this.x + "," + this.y + ")";
|
||||
}
|
||||
}
|
||||
|
||||
var a = new Vec2(1, 2);
|
||||
var b = new Vec2(3, 4);
|
||||
var r;
|
||||
|
||||
r = a * 2 + 3 * b;
|
||||
assert(r.x === 11 && r.y === 16);
|
||||
assert(a == a, true);
|
||||
assert(a == b, false);
|
||||
assert(a != a, false);
|
||||
assert(a < b, true);
|
||||
assert(a <= b, true);
|
||||
assert(b < a, false);
|
||||
assert(b <= a, false);
|
||||
assert(a <= a, true);
|
||||
assert(a >= a, true);
|
||||
a++;
|
||||
assert(a.x === 2 && a.y === 3);
|
||||
r = ++a;
|
||||
assert(a.x === 3 && a.y === 4);
|
||||
assert(r === a);
|
||||
}
|
||||
|
||||
function test_default_op()
|
||||
{
|
||||
assert(Object(1) + 2, 3);
|
||||
assert(Object(1) + true, 2);
|
||||
assert(-Object(1), -1);
|
||||
}
|
||||
|
||||
test_operators_create();
|
||||
test_operators();
|
||||
test_default_op();
|
@ -1,256 +0,0 @@
|
||||
"use math";
|
||||
"use strict";
|
||||
|
||||
function assert(actual, expected, message) {
|
||||
if (arguments.length == 1)
|
||||
expected = true;
|
||||
|
||||
if (actual === expected)
|
||||
return;
|
||||
|
||||
if (actual !== null && expected !== null
|
||||
&& typeof actual == 'object' && typeof expected == 'object'
|
||||
&& actual.toString() === expected.toString())
|
||||
return;
|
||||
|
||||
throw Error("assertion failed: got |" + actual + "|" +
|
||||
", expected |" + expected + "|" +
|
||||
(message ? " (" + message + ")" : ""));
|
||||
}
|
||||
|
||||
function assertThrows(err, func)
|
||||
{
|
||||
var ex;
|
||||
ex = false;
|
||||
try {
|
||||
func();
|
||||
} catch(e) {
|
||||
ex = true;
|
||||
assert(e instanceof err);
|
||||
}
|
||||
assert(ex, true, "exception expected");
|
||||
}
|
||||
|
||||
// load more elaborate version of assert if available
|
||||
try { __loadScript("test_assert.js"); } catch(e) {}
|
||||
|
||||
/*----------------*/
|
||||
|
||||
function pow(a, n)
|
||||
{
|
||||
var r, i;
|
||||
r = 1;
|
||||
for(i = 0; i < n; i++)
|
||||
r *= a;
|
||||
return r;
|
||||
}
|
||||
|
||||
function test_integer()
|
||||
{
|
||||
var a, r;
|
||||
a = pow(3, 100);
|
||||
assert((a - 1) != a);
|
||||
assert(a == 515377520732011331036461129765621272702107522001);
|
||||
assert(a == 0x5a4653ca673768565b41f775d6947d55cf3813d1);
|
||||
assert(Integer.isInteger(1) === true);
|
||||
assert(Integer.isInteger(1.0) === false);
|
||||
|
||||
assert(Integer.floorLog2(0) === -1);
|
||||
assert(Integer.floorLog2(7) === 2);
|
||||
|
||||
r = 1 << 31;
|
||||
assert(r, 2147483648, "1 << 31 === 2147483648");
|
||||
|
||||
r = 1 << 32;
|
||||
assert(r, 4294967296, "1 << 32 === 4294967296");
|
||||
|
||||
r = (1 << 31) < 0;
|
||||
assert(r, false, "(1 << 31) < 0 === false");
|
||||
|
||||
assert(typeof 1 === "number");
|
||||
assert(typeof 9007199254740991 === "number");
|
||||
assert(typeof 9007199254740992 === "bigint");
|
||||
}
|
||||
|
||||
function test_float()
|
||||
{
|
||||
assert(typeof 1.0 === "bigfloat");
|
||||
assert(1 == 1.0);
|
||||
assert(1 !== 1.0);
|
||||
}
|
||||
|
||||
/* jscalc tests */
|
||||
|
||||
function test_modulo()
|
||||
{
|
||||
var i, p, a, b;
|
||||
|
||||
/* Euclidian modulo operator */
|
||||
assert((-3) % 2 == 1);
|
||||
assert(3 % (-2) == 1);
|
||||
|
||||
p = 101;
|
||||
for(i = 1; i < p; i++) {
|
||||
a = Integer.invmod(i, p);
|
||||
assert(a >= 0 && a < p);
|
||||
assert((i * a) % p == 1);
|
||||
}
|
||||
|
||||
assert(Integer.isPrime(2^107-1));
|
||||
assert(!Integer.isPrime((2^107-1) * (2^89-1)));
|
||||
a = Integer.factor((2^89-1)*2^3*11*13^2*1009);
|
||||
assert(a == [ 2,2,2,11,13,13,1009,618970019642690137449562111 ]);
|
||||
}
|
||||
|
||||
function test_fraction()
|
||||
{
|
||||
assert((1/3 + 1).toString(), "4/3")
|
||||
assert((2/3)^30, 1073741824/205891132094649);
|
||||
assert(1/3 < 2/3);
|
||||
assert(1/3 < 1);
|
||||
assert(1/3 == 1.0/3);
|
||||
assert(1.0/3 < 2/3);
|
||||
}
|
||||
|
||||
function test_mod()
|
||||
{
|
||||
var a, b, p;
|
||||
|
||||
a = Mod(3, 101);
|
||||
b = Mod(-1, 101);
|
||||
assert((a + b) == Mod(2, 101));
|
||||
assert(a ^ 100 == Mod(1, 101));
|
||||
|
||||
p = 2 ^ 607 - 1; /* mersenne prime */
|
||||
a = Mod(3, p) ^ (p - 1);
|
||||
assert(a == Mod(1, p));
|
||||
}
|
||||
|
||||
function test_polynomial()
|
||||
{
|
||||
var a, b, q, r, t, i;
|
||||
a = (1 + X) ^ 4;
|
||||
assert(a == X^4+4*X^3+6*X^2+4*X+1);
|
||||
|
||||
r = (1 + X);
|
||||
q = (1+X+X^2);
|
||||
b = (1 - X^2);
|
||||
a = q * b + r;
|
||||
t = Polynomial.divrem(a, b);
|
||||
assert(t[0] == q);
|
||||
assert(t[1] == r);
|
||||
|
||||
a = 1 + 2*X + 3*X^2;
|
||||
assert(a.apply(0.1) == 1.23);
|
||||
|
||||
a = 1-2*X^2+2*X^3;
|
||||
assert(deriv(a) == (6*X^2-4*X));
|
||||
assert(deriv(integ(a)) == a);
|
||||
|
||||
a = (X-1)*(X-2)*(X-3)*(X-4)*(X-0.1);
|
||||
r = polroots(a);
|
||||
for(i = 0; i < r.length; i++) {
|
||||
b = abs(a.apply(r[i]));
|
||||
assert(b <= 1e-13);
|
||||
}
|
||||
}
|
||||
|
||||
function test_poly_mod()
|
||||
{
|
||||
var a, p;
|
||||
|
||||
/* modulo using polynomials */
|
||||
p = X^2 + X + 1;
|
||||
a = PolyMod(3+X, p) ^ 10;
|
||||
assert(a == PolyMod(-3725*X-18357, p));
|
||||
|
||||
a = PolyMod(1/X, 1+X^2);
|
||||
assert(a == PolyMod(-X, X^2+1));
|
||||
}
|
||||
|
||||
function test_rfunc()
|
||||
{
|
||||
var a;
|
||||
a = (X+1)/((X+1)*(X-1));
|
||||
assert(a == 1/(X-1));
|
||||
a = (X + 2) / (X - 2);
|
||||
assert(a.apply(1/3) == -7/5);
|
||||
|
||||
assert(deriv((X^2-X+1)/(X-1)) == (X^2-2*X)/(X^2-2*X+1));
|
||||
}
|
||||
|
||||
function test_series()
|
||||
{
|
||||
var a, b;
|
||||
a = 1+X+O(X^5);
|
||||
b = a.inverse();
|
||||
assert(b == 1-X+X^2-X^3+X^4+O(X^5));
|
||||
assert(deriv(b) == -1+2*X-3*X^2+4*X^3+O(X^4));
|
||||
assert(deriv(integ(b)) == b);
|
||||
|
||||
a = Series(1/(1-X), 5);
|
||||
assert(a == 1+X+X^2+X^3+X^4+O(X^5));
|
||||
b = a.apply(0.1);
|
||||
assert(b == 1.1111);
|
||||
|
||||
assert(exp(3*X^2+O(X^10)) == 1+3*X^2+9/2*X^4+9/2*X^6+27/8*X^8+O(X^10));
|
||||
assert(sin(X+O(X^6)) == X-1/6*X^3+1/120*X^5+O(X^6));
|
||||
assert(cos(X+O(X^6)) == 1-1/2*X^2+1/24*X^4+O(X^6));
|
||||
assert(tan(X+O(X^8)) == X+1/3*X^3+2/15*X^5+17/315*X^7+O(X^8));
|
||||
assert((1+X+O(X^6))^(2+X) == 1+2*X+2*X^2+3/2*X^3+5/6*X^4+5/12*X^5+O(X^6));
|
||||
}
|
||||
|
||||
function test_matrix()
|
||||
{
|
||||
var a, b, r;
|
||||
a = [[1, 2],[3, 4]];
|
||||
b = [3, 4];
|
||||
r = a * b;
|
||||
assert(r == [11, 25]);
|
||||
r = (a^-1) * 2;
|
||||
assert(r == [[-4, 2],[3, -1]]);
|
||||
|
||||
assert(norm2([1,2,3]) == 14);
|
||||
|
||||
assert(diag([1,2,3]) == [ [ 1, 0, 0 ], [ 0, 2, 0 ], [ 0, 0, 3 ] ]);
|
||||
assert(trans(a) == [ [ 1, 3 ], [ 2, 4 ] ]);
|
||||
assert(trans([1,2,3]) == [[1,2,3]]);
|
||||
assert(trace(a) == 5);
|
||||
|
||||
assert(charpoly(Matrix.hilbert(4)) == X^4-176/105*X^3+3341/12600*X^2-41/23625*X+1/6048000);
|
||||
assert(det(Matrix.hilbert(4)) == 1/6048000);
|
||||
|
||||
a = [[1,2,1],[-2,-3,1],[3,5,0]];
|
||||
assert(rank(a) == 2);
|
||||
assert(ker(a) == [ [ 5 ], [ -3 ], [ 1 ] ]);
|
||||
|
||||
assert(dp([1, 2, 3], [3, -4, -7]) === -26);
|
||||
assert(cp([1, 2, 3], [3, -4, -7]) == [ -2, 16, -10 ]);
|
||||
}
|
||||
|
||||
function assert_eq(a, ref)
|
||||
{
|
||||
assert(abs(a / ref - 1.0) <= 1e-15);
|
||||
}
|
||||
|
||||
function test_trig()
|
||||
{
|
||||
assert_eq(sin(1/2), 0.479425538604203);
|
||||
assert_eq(sin(2+3*I), 9.154499146911428-4.168906959966565*I);
|
||||
assert_eq(cos(2+3*I), -4.189625690968807-9.109227893755337*I);
|
||||
assert_eq((2+0.5*I)^(1.1-0.5*I), 2.494363021357619-0.23076804554558092*I);
|
||||
assert_eq(sqrt(2*I), 1 + I);
|
||||
}
|
||||
|
||||
test_integer();
|
||||
test_float();
|
||||
|
||||
test_modulo();
|
||||
test_fraction();
|
||||
test_mod();
|
||||
test_polynomial();
|
||||
test_poly_mod();
|
||||
test_rfunc();
|
||||
test_series();
|
||||
test_matrix();
|
||||
test_trig();
|
Loading…
x
Reference in New Issue
Block a user