
1

Javascript Bignum Extensions

Version 2020-01-11

Author: Fabrice Bellard

i

Table of Contents

1 Introduction . 1

2 Operator overloading . 2

3 BigInt extensions . 3

4 BigFloat . 4
4.1 Introduction . 4
4.2 Floating point rounding . 4
4.3 Operators . 4
4.4 BigFloat literals . 4
4.5 Builtin Object changes . 5

4.5.1 BigFloat function . 5
4.5.2 BigFloat.prototype . 6
4.5.3 BigFloatEnv constructor . 6

5 BigDecimal . 9
5.1 Operators . 9
5.2 BigDecimal literals . 9
5.3 Builtin Object changes . 9

5.3.1 The BigDecimal function. 9
5.3.2 Properties of the BigDecimal object . 10
5.3.3 Properties of the BigDecimal.prototype object . 10

6 Math mode . 11

1

1 Introduction

The Bignum extensions add the following features to the Javascript language while being 100%
backward compatible:

• Operator overloading with a dispatch logic inspired from the proposal available at https://
github.com/tc39/proposal-operator-overloading/.

• Arbitrarily large floating point numbers (BigFloat) in base 2 using the IEEE 754 semantics.

• Arbitrarily large floating point numbers (BigDecimal) in base 10 based on the proposal
available at https://github.com/littledan/proposal-bigdecimal.

• math mode: arbitrarily large integers and floating point numbers are available by default.
The integer division and power can be overloaded for example to return a fraction. The
modulo operator (%) is defined as the Euclidian remainder. ^ is an alias to the power
operator (**). ^^ is used as the exclusive or operator.

The extensions are independent from each other except the math mode which relies on
BigFloat and operator overloading.

https://github.com/tc39/proposal-operator-overloading/
https://github.com/tc39/proposal-operator-overloading/
https://github.com/littledan/proposal-bigdecimal

2

2 Operator overloading

Operator overloading is inspired from the proposal available at https://github.com/tc39/

proposal-operator-overloading/. It implements the same dispatch logic but finds the op-
erator sets by looking at the Symbol.operatorSet property in the objects. The changes were
done in order to simplify the implementation.

More precisely, the following modifications were made:

• with operators from is not supported. Operator overloading is always enabled.

• The dispatch is not based on a static [[OperatorSet]] field in all instances. Instead, a
dynamic lookup the of the Symbol.operatorSet property is done. This property is typically
added in the prototype of each object.

• Operators.create(...dictionaries) is used to create a new OperatorSet object. The
Operators function is supported as an helper to be closer to the TC39 proposal.

• [] cannot be overloaded.

• In math mode, the BigInt division and power operators can be overloaded with
Operators.updateBigIntOperators(dictionary).

https://github.com/tc39/proposal-operator-overloading/
https://github.com/tc39/proposal-operator-overloading/

3

3 BigInt extensions

A few properties are added to the BigInt object:

tdiv(a, b)

Return trunc(a/b). b = 0 raises a RangeError exception.

fdiv(a, b)

Return ba/bc. b = 0 raises a RangeError exception.

cdiv(a, b)

Return da/be. b = 0 raises a RangeError exception.

ediv(a, b)

Return sgn(b)ba/|b|c (Euclidian division). b = 0 raises a RangeError exception.

tdivrem(a, b)

fdivrem(a, b)

cdivrem(a, b)

edivrem(a, b)

Return an array of two elements. The first element is the quotient, the second is
the remainder. The same rounding is done as the corresponding division operation.

sqrt(a) Return b
√
(a)c. A RangeError exception is raised if a < 0.

sqrtrem(a)

Return an array of two elements. The first element is b
√
ac. The second element is

a− b
√
ac2. A RangeError exception is raised if a < 0.

floorLog2(a)

Return -1 if a ≤ 0 otherwise return blog 2(a)c.

ctz(a) Return the number of trailing zeros in the two’s complement binary representation
of a. Return -1 if a = 0.

4

4 BigFloat

4.1 Introduction

This extension adds the BigFloat primitive type. The BigFloat type represents floating point
numbers are in base 2 with the IEEE 754 semantics. A floating point number is represented as
a sign, mantissa and exponent. The special values NaN, +/-Infinity, +0 and -0 are supported.
The mantissa and exponent can have any bit length with an implementation specific minimum
and maximum.

4.2 Floating point rounding

Each floating point operation operates with infinite precision and then rounds the result accord-
ing to the specified floating point environment (BigFloatEnv object). The status flags of the
environment are also set according to the result of the operation.

If no floating point environment is provided, the global floating point environment is used.

The rounding mode of the global floating point environment is always RNDN (“round to
nearest with ties to even”)1. The status flags of the global environment cannot be read2. The
precision of the global environment is BigFloatEnv.prec. The number of exponent bits of the
global environment is BigFloatEnv.expBits. If BigFloatEnv.expBits is strictly smaller than
the maximum allowed number of exponent bits (BigFloatEnv.expBitsMax), then the global
environment subnormal flag is set to true. Otherwise it is set to false;

For example, prec = 53 and expBits = 11 give exactly the same precision as the IEEE 754
64 bit floating point. The default precision is prec = 113 and expBits = 15 (IEEE 754 128 bit
floating point).

The global floating point environment can only be modified temporarily when calling a func-
tion (see BigFloatEnv.setPrec). Hence a function can change the global floating point envi-
ronment for its callees but not for its caller.

4.3 Operators

The builtin operators are extended so that a BigFloat is returned if at least one operand is a
BigFloat. The computations are always done with infinite precision and rounded according to
the global floating point environment.

typeof applied on a BigFloat returns bigfloat.

BigFloat can be compared with all the other numeric types and the result follows the expected
mathematical relations.

However, since BigFloat and Number are different types they are never equal when using the
strict comparison operators (e.g. 0.0 === 0.0l is false).

4.4 BigFloat literals

BigFloat literals are floating point numbers with a trailing l suffix. BigFloat literals have an
infinite precision. They are rounded according to the global floating point environment when
they are evaluated.3

1 The rationale is that the rounding mode changes must always be explicit.
2 The rationale is to avoid side effects for the built-in operators.
3 Base 10 floating point literals cannot usually be exactly represented as base 2 floating point number. In order

to ensure that the literal is represented accurately with the current precision, it must be evaluated at runtime.

Chapter 4: BigFloat 5

4.5 Builtin Object changes

4.5.1 BigFloat function

The BigFloat function cannot be invoked as a constructor. When invoked as a function: the
parameter is converted to a primitive type. If the result is a numeric type, it is converted
to BigFloat without rounding. If the result is a string, it is converted to BigFloat using the
precision of the global floating point environment.

BigFloat properties:

LN2

PI Getter. Return the value of the corresponding mathematical constant rounded to
nearest, ties to even with the current global precision. The constant values are
cached for small precisions.

MIN_VALUE

MAX_VALUE

EPSILON Getter. Return the minimum, maximum and epsilon BigFloat values (same defini-
tion as the corresponding Number constants).

fpRound(a[, e])

Round the floating point number a according to the floating point environment e
or the global environment if e is undefined.

parseFloat(a[, radix[, e]])

Parse the string a as a floating point number in radix radix. The radix is 0 (default)
or from 2 to 36. The radix 0 means radix 10 unless there is a hexadecimal or binary
prefix. The result is rounded according to the floating point environment e or the
global environment if e is undefined.

isFinite(a)

Return true if a is a finite bigfloat.

isNaN(a) Return true if a is a NaN bigfloat.

add(a, b[, e])

sub(a, b[, e])

mul(a, b[, e])

div(a, b[, e])

Perform the specified floating point operation and round the floating point number
a according to the floating point environment e or the global environment if e is
undefined. If e is specified, the floating point status flags are updated.

floor(x)

ceil(x)

round(x)

trunc(x) Round to an integer. No additional rounding is performed.

abs(x) Return the absolute value of x. No additional rounding is performed.

fmod(x, y[, e])

remainder(x, y[, e])

Floating point remainder. The quotient is truncated to zero (fmod) or to the nearest
integer with ties to even (remainder). e is an optional floating point environment.

sqrt(x[, e])

Square root. Return a rounded floating point number. e is an optional floating
point environment.

Chapter 4: BigFloat 6

sin(x[, e])

cos(x[, e])

tan(x[, e])

asin(x[, e])

acos(x[, e])

atan(x[, e])

atan2(x, y[, e])

exp(x[, e])

log(x[, e])

pow(x, y[, e])

Transcendental operations. Return a rounded floating point number. e is an op-
tional floating point environment.

4.5.2 BigFloat.prototype

The following properties are modified:

valueOf()

Return the bigfloat primitive value corresponding to this.

toString(radix)

For floating point numbers:

• If the radix is a power of two, the conversion is done with infinite precision.

• Otherwise, the number is rounded to nearest with ties to even using the global
precision. It is then converted to string using the minimum number of digits
so that its conversion back to a floating point using the global precision and
round to nearest gives the same number.

The exponent letter is e for base 10, p for bases 2, 8, 16 with a binary exponent and
@ for the other bases.

toPrecision(p, rnd_mode = BigFloatEnv.RNDNA, radix = 10)

toFixed(p, rnd_mode = BigFloatEnv.RNDNA, radix = 10)

toExponential(p, rnd_mode = BigFloatEnv.RNDNA, radix = 10)

Same semantics as the corresponding Number functions with BigFloats. There is no
limit on the accepted precision p. The rounding mode and radix can be optionally
specified. The radix must be between 2 and 36.

4.5.3 BigFloatEnv constructor

The BigFloatEnv([p, [,rndMode]] constructor cannot be invoked as a function. The floating
point environment contains:

• the mantissa precision in bits

• the exponent size in bits assuming an IEEE 754 representation;

• the subnormal flag (if true, subnormal floating point numbers can be generated by the
floating point operations).

• the rounding mode

• the floating point status. The status flags can only be set by the floating point operations.
They can be reset with BigFloatEnv.prototype.clearStatus() or with the various status
flag setters.

new BigFloatEnv([p, [,rndMode]] creates a new floating point environment. The status
flags are reset. If no parameter is given the precision, exponent bits and subnormal flags are
copied from the global floating point environment. Otherwise, the precision is set to p, the

Chapter 4: BigFloat 7

number of exponent bits is set to expBitsMax and the subnormal flags is set to false. If
rndMode is undefined, the rounding mode is set to RNDN.

BigFloatEnv properties:

prec Getter. Return the precision in bits of the global floating point environment. The
initial value is 113.

expBits Getter. Return the exponent size in bits of the global floating point environment
assuming an IEEE 754 representation. If expBits < expBitsMax, then subnormal
numbers are supported. The initial value is 15.

setPrec(f, p[, e])

Set the precision of the global floating point environment to p and the exponent size
to e then call the function f. Then the Float precision and exponent size are reset to
their precious value and the return value of f is returned (or an exception is raised
if f raised an exception). If e is undefined it is set to BigFloatEnv.expBitsMax.

precMin Read-only integer. Return the minimum allowed precision. Must be at least 2.

precMax Read-only integer. Return the maximum allowed precision. Must be at least 113.

expBitsMin

Read-only integer. Return the minimum allowed exponent size in bits. Must be at
least 3.

expBitsMax

Read-only integer. Return the maximum allowed exponent size in bits. Must be at
least 15.

RNDN Read-only integer. Round to nearest, with ties to even rounding mode.

RNDZ Read-only integer. Round to zero rounding mode.

RNDD Read-only integer. Round to -Infinity rounding mode.

RNDU Read-only integer. Round to +Infinity rounding mode.

RNDNA Read-only integer. Round to nearest, with ties away from zero rounding mode.

RNDA Read-only integer. Round away from zero rounding mode.

RNDF4 Read-only integer. Faithful rounding mode. The result is non-deterministically
rounded to -Infinity or +Infinity. This rounding mode usually gives a faster and
deterministic running time for the floating point operations.

BigFloatEnv.prototype properties:

prec Getter and setter (Integer). Return or set the precision in bits.

expBits Getter and setter (Integer). Return or set the exponent size in bits assuming an
IEEE 754 representation.

rndMode Getter and setter (Integer). Return or set the rounding mode.

subnormal

Getter and setter (Boolean). subnormal flag. It is false when expBits =

expBitsMax.

clearStatus()

Clear the status flags.

4 Could be removed in case a deterministic behavior for floating point operations is required.

8

invalidOperation

divideByZero

overflow

underflow

inexact Getter and setter (Boolean). Status flags.

9

5 BigDecimal

This extension adds the BigDecimal primitive type. The BigDecimal type represents floating
point numbers in base 10. It is inspired from the proposal available at https://github.com/
littledan/proposal-bigdecimal.

The BigDecimal floating point numbers are always normalized and finite. There is no concept
of -0, Infinity or NaN. By default, all the computations are done with infinite precision.

5.1 Operators

The following builtin operators support BigDecimal:

+

-

* Both operands must be BigDecimal. The result is computed with infinite precision.

% Both operands must be BigDecimal. The result is computed with infinite precision.
A range error is throws in case of division by zero.

/ Both operands must be BigDecimal. A range error is throws in case of divi-
sion by zero or if the result cannot be represented with infinite precision (use
BigDecimal.div to specify the rounding).

** Both operands must be BigDecimal. The exponent must be a positive integer. The
result is computed with infinite precision.

=== When one of the operand is a BigDecimal, return true if both operands are a BigDec-
imal and if they are equal.

==

!=

<=

>=

<

>

Numerical comparison. When one of the operand is not a BigDecimal, it is con-
verted to BigDecimal by using ToString(). Hence comparisons between Number and
BigDecimal do not use the exact mathematical value of the Number value.

5.2 BigDecimal literals

BigDecimal literals are decimal floating point numbers with a trailing m suffix.

5.3 Builtin Object changes

5.3.1 The BigDecimal function.

It returns 0m if no parameter is provided. Otherwise the first parameter is converted to a
bigdecimal by using ToString(). Hence Number value are not converted to their exact numerical
value as BigDecimal.

https://github.com/littledan/proposal-bigdecimal
https://github.com/littledan/proposal-bigdecimal

Chapter 5: BigDecimal 10

5.3.2 Properties of the BigDecimal object

add(a, b[, e])

sub(a, b[, e])

mul(a, b[, e])

div(a, b[, e])

mod(a, b[, e])

sqrt(a, e)

round(a, e)

Perform the specified floating point operation and round the floating point result
according to the rounding object e. If the rounding object is not present, the
operation is executed with infinite precision.

For div, a RangeError exception is thrown in case of division by zero or if the result
cannot be represented with infinite precision if no rounding object is present.

For sqrt, a range error is thrown if a is less than zero.

The rounding object must contain the following properties: roundingMode is a string
specifying the rounding mode ("floor", "ceiling", "down", "up", "half-even",
"half-up"). Either maximumSignificantDigits or maximumFractionDigits must
be present to specify respectively the number of significant digits (must be >= 1) or
the number of digits after the decimal point (must be >= 0).

5.3.3 Properties of the BigDecimal.prototype object

valueOf()

Return the bigdecimal primitive value corresponding to this.

toString()

Convert this to a string with infinite precision in base 10.

toPrecision(p, rnd_mode = "half-up")

toFixed(p, rnd_mode = "half-up")

toExponential(p, rnd_mode = "half-up")

Convert the BigDecimal this to string with the specified precision p. There is no
limit on the accepted precision p. The rounding mode can be optionally specified.
toPrecision outputs either in decimal fixed notation or in decimal exponential
notation with a p digits of precision. toExponential outputs in decimal exponential
notation with p digits after the decimal point. toFixed outputs in decimal notation
with p digits after the decimal point.

11

6 Math mode

A new math mode is enabled with the "use math" directive. It propagates the same way as
the strict mode. It is designed so that arbitrarily large integers and floating point numbers are
available by default. In order to minimize the number of changes in the Javascript semantics,
integers are represented either as Number or BigInt depending on their magnitude. Floating
point numbers are always represented as BigFloat.

The following changes are made to the Javascript semantics:

• Floating point literals (i.e. number with a decimal point or an exponent) are BigFloat by
default (i.e. a l suffix is implied). Hence typeof 1.0 === "bigfloat".

• Integer literals (i.e. numbers without a decimal point or an exponent) with or without the
n suffix are BigInt if their value cannot be represented as a safe integer. A safe integer is
defined as a integer whose absolute value is smaller or equal to 2**53-1. Hence typeof 1

=== "number ", typeof 1n === "number" but typeof 9007199254740992 === "bigint" .

• All the bigint builtin operators and functions are modified so that their result is returned
as a Number if it is a safe integer. Otherwise the result stays a BigInt.

• The builtin operators are modified so that they return an exact result (which can be a
BigInt) if their operands are safe integers. Operands between Number and BigInt are
accepted provided the Number operand is a safe integer. The integer power with a negative
exponent returns a BigFloat as result. The integer division returns a BigFloat as result.

• The ^ operator is an alias to the power operator (**).

• The power operator (both ^ and **) grammar is modified so that -2^2 is allowed and yields
-4.

• The logical xor operator is still available with the ^^ operator.

• The integer division operator can be overloaded by modifying the corresponding operator
in BigInt.prototype.[[OperatorSet]].

• The integer power operator with a non zero negative exponent can be overloaded by modi-
fying the corresponding operator in BigInt.prototype.[[OperatorSet]].

• The modulo operator (%) returns the Euclidian remainder (always positive) instead of the
truncated remainder.

	Introduction
	Operator overloading
	BigInt extensions
	BigFloat
	Introduction
	Floating point rounding
	Operators
	BigFloat literals
	Builtin Object changes
	BigFloat function
	BigFloat.prototype
	BigFloatEnv constructor

	BigDecimal
	Operators
	BigDecimal literals
	Builtin Object changes
	The BigDecimal function.
	Properties of the BigDecimal object
	Properties of the BigDecimal.prototype object

	Math mode

