mirror of
https://github.com/bellard/quickjs.git
synced 2025-05-09 18:15:43 +08:00
1621 lines
44 KiB
C
1621 lines
44 KiB
C
/*
|
|
* Tiny float64 printing and parsing library
|
|
*
|
|
* Copyright (c) 2024 Fabrice Bellard
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <stdarg.h>
|
|
#include <inttypes.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <sys/time.h>
|
|
#include <math.h>
|
|
#include <setjmp.h>
|
|
|
|
#include "cutils.h"
|
|
#include "dtoa.h"
|
|
|
|
/*
|
|
TODO:
|
|
- test n_digits=101 instead of 100
|
|
- simplify subnormal handling
|
|
- reduce max memory usage
|
|
- free format: could add shortcut if exact result
|
|
- use 64 bit limb_t when possible
|
|
- use another algorithm for free format dtoa in base 10 (ryu ?)
|
|
*/
|
|
|
|
#define USE_POW5_TABLE
|
|
/* use fast path to print small integers in free format */
|
|
#define USE_FAST_INT
|
|
|
|
#define LIMB_LOG2_BITS 5
|
|
|
|
#define LIMB_BITS (1 << LIMB_LOG2_BITS)
|
|
|
|
typedef int32_t slimb_t;
|
|
typedef uint32_t limb_t;
|
|
typedef uint64_t dlimb_t;
|
|
|
|
#define LIMB_DIGITS 9
|
|
|
|
#define JS_RADIX_MAX 36
|
|
|
|
#define DBIGNUM_LEN_MAX 52 /* ~ 2^(1072+53)*36^100 (dtoa) */
|
|
#define MANT_LEN_MAX 18 /* < 36^100 */
|
|
|
|
typedef intptr_t mp_size_t;
|
|
|
|
/* the represented number is sum(i, tab[i]*2^(LIMB_BITS * i)) */
|
|
typedef struct {
|
|
int len; /* >= 1 */
|
|
limb_t tab[];
|
|
} mpb_t;
|
|
|
|
static limb_t mp_add_ui(limb_t *tab, limb_t b, size_t n)
|
|
{
|
|
size_t i;
|
|
limb_t k, a;
|
|
|
|
k=b;
|
|
for(i=0;i<n;i++) {
|
|
if (k == 0)
|
|
break;
|
|
a = tab[i] + k;
|
|
k = (a < k);
|
|
tab[i] = a;
|
|
}
|
|
return k;
|
|
}
|
|
|
|
/* tabr[] = taba[] * b + l. Return the high carry */
|
|
static limb_t mp_mul1(limb_t *tabr, const limb_t *taba, limb_t n,
|
|
limb_t b, limb_t l)
|
|
{
|
|
limb_t i;
|
|
dlimb_t t;
|
|
|
|
for(i = 0; i < n; i++) {
|
|
t = (dlimb_t)taba[i] * (dlimb_t)b + l;
|
|
tabr[i] = t;
|
|
l = t >> LIMB_BITS;
|
|
}
|
|
return l;
|
|
}
|
|
|
|
/* WARNING: d must be >= 2^(LIMB_BITS-1) */
|
|
static inline limb_t udiv1norm_init(limb_t d)
|
|
{
|
|
limb_t a0, a1;
|
|
a1 = -d - 1;
|
|
a0 = -1;
|
|
return (((dlimb_t)a1 << LIMB_BITS) | a0) / d;
|
|
}
|
|
|
|
/* return the quotient and the remainder in '*pr'of 'a1*2^LIMB_BITS+a0
|
|
/ d' with 0 <= a1 < d. */
|
|
static inline limb_t udiv1norm(limb_t *pr, limb_t a1, limb_t a0,
|
|
limb_t d, limb_t d_inv)
|
|
{
|
|
limb_t n1m, n_adj, q, r, ah;
|
|
dlimb_t a;
|
|
n1m = ((slimb_t)a0 >> (LIMB_BITS - 1));
|
|
n_adj = a0 + (n1m & d);
|
|
a = (dlimb_t)d_inv * (a1 - n1m) + n_adj;
|
|
q = (a >> LIMB_BITS) + a1;
|
|
/* compute a - q * r and update q so that the remainder is between
|
|
0 and d - 1 */
|
|
a = ((dlimb_t)a1 << LIMB_BITS) | a0;
|
|
a = a - (dlimb_t)q * d - d;
|
|
ah = a >> LIMB_BITS;
|
|
q += 1 + ah;
|
|
r = (limb_t)a + (ah & d);
|
|
*pr = r;
|
|
return q;
|
|
}
|
|
|
|
static limb_t mp_div1(limb_t *tabr, const limb_t *taba, limb_t n,
|
|
limb_t b, limb_t r)
|
|
{
|
|
slimb_t i;
|
|
dlimb_t a1;
|
|
for(i = n - 1; i >= 0; i--) {
|
|
a1 = ((dlimb_t)r << LIMB_BITS) | taba[i];
|
|
tabr[i] = a1 / b;
|
|
r = a1 % b;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/* r = (a + high*B^n) >> shift. Return the remainder r (0 <= r < 2^shift).
|
|
1 <= shift <= LIMB_BITS - 1 */
|
|
static limb_t mp_shr(limb_t *tab_r, const limb_t *tab, mp_size_t n,
|
|
int shift, limb_t high)
|
|
{
|
|
mp_size_t i;
|
|
limb_t l, a;
|
|
|
|
assert(shift >= 1 && shift < LIMB_BITS);
|
|
l = high;
|
|
for(i = n - 1; i >= 0; i--) {
|
|
a = tab[i];
|
|
tab_r[i] = (a >> shift) | (l << (LIMB_BITS - shift));
|
|
l = a;
|
|
}
|
|
return l & (((limb_t)1 << shift) - 1);
|
|
}
|
|
|
|
/* r = (a << shift) + low. 1 <= shift <= LIMB_BITS - 1, 0 <= low <
|
|
2^shift. */
|
|
static limb_t mp_shl(limb_t *tab_r, const limb_t *tab, mp_size_t n,
|
|
int shift, limb_t low)
|
|
{
|
|
mp_size_t i;
|
|
limb_t l, a;
|
|
|
|
assert(shift >= 1 && shift < LIMB_BITS);
|
|
l = low;
|
|
for(i = 0; i < n; i++) {
|
|
a = tab[i];
|
|
tab_r[i] = (a << shift) | l;
|
|
l = (a >> (LIMB_BITS - shift));
|
|
}
|
|
return l;
|
|
}
|
|
|
|
static no_inline limb_t mp_div1norm(limb_t *tabr, const limb_t *taba, limb_t n,
|
|
limb_t b, limb_t r, limb_t b_inv, int shift)
|
|
{
|
|
slimb_t i;
|
|
|
|
if (shift != 0) {
|
|
r = (r << shift) | mp_shl(tabr, taba, n, shift, 0);
|
|
}
|
|
for(i = n - 1; i >= 0; i--) {
|
|
tabr[i] = udiv1norm(&r, r, taba[i], b, b_inv);
|
|
}
|
|
r >>= shift;
|
|
return r;
|
|
}
|
|
|
|
static __maybe_unused void mpb_dump(const char *str, const mpb_t *a)
|
|
{
|
|
int i;
|
|
|
|
printf("%s= 0x", str);
|
|
for(i = a->len - 1; i >= 0; i--) {
|
|
printf("%08x", a->tab[i]);
|
|
if (i != 0)
|
|
printf("_");
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
static void mpb_renorm(mpb_t *r)
|
|
{
|
|
while (r->len > 1 && r->tab[r->len - 1] == 0)
|
|
r->len--;
|
|
}
|
|
|
|
#ifdef USE_POW5_TABLE
|
|
static const uint32_t pow5_table[17] = {
|
|
0x00000005, 0x00000019, 0x0000007d, 0x00000271,
|
|
0x00000c35, 0x00003d09, 0x0001312d, 0x0005f5e1,
|
|
0x001dcd65, 0x009502f9, 0x02e90edd, 0x0e8d4a51,
|
|
0x48c27395, 0x6bcc41e9, 0x1afd498d, 0x86f26fc1,
|
|
0xa2bc2ec5,
|
|
};
|
|
|
|
static const uint8_t pow5h_table[4] = {
|
|
0x00000001, 0x00000007, 0x00000023, 0x000000b1,
|
|
};
|
|
|
|
static const uint32_t pow5_inv_table[13] = {
|
|
0x99999999, 0x47ae147a, 0x0624dd2f, 0xa36e2eb1,
|
|
0x4f8b588e, 0x0c6f7a0b, 0xad7f29ab, 0x5798ee23,
|
|
0x12e0be82, 0xb7cdfd9d, 0x5fd7fe17, 0x19799812,
|
|
0xc25c2684,
|
|
};
|
|
#endif
|
|
|
|
/* return a^b */
|
|
static uint64_t pow_ui(uint32_t a, uint32_t b)
|
|
{
|
|
int i, n_bits;
|
|
uint64_t r;
|
|
if (b == 0)
|
|
return 1;
|
|
if (b == 1)
|
|
return a;
|
|
#ifdef USE_POW5_TABLE
|
|
if ((a == 5 || a == 10) && b <= 17) {
|
|
r = pow5_table[b - 1];
|
|
if (b >= 14) {
|
|
r |= (uint64_t)pow5h_table[b - 14] << 32;
|
|
}
|
|
if (a == 10)
|
|
r <<= b;
|
|
return r;
|
|
}
|
|
#endif
|
|
r = a;
|
|
n_bits = 32 - clz32(b);
|
|
for(i = n_bits - 2; i >= 0; i--) {
|
|
r *= r;
|
|
if ((b >> i) & 1)
|
|
r *= a;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static uint32_t pow_ui_inv(uint32_t *pr_inv, int *pshift, uint32_t a, uint32_t b)
|
|
{
|
|
uint32_t r_inv, r;
|
|
int shift;
|
|
#ifdef USE_POW5_TABLE
|
|
if (a == 5 && b >= 1 && b <= 13) {
|
|
r = pow5_table[b - 1];
|
|
shift = clz32(r);
|
|
r <<= shift;
|
|
r_inv = pow5_inv_table[b - 1];
|
|
} else
|
|
#endif
|
|
{
|
|
r = pow_ui(a, b);
|
|
shift = clz32(r);
|
|
r <<= shift;
|
|
r_inv = udiv1norm_init(r);
|
|
}
|
|
*pshift = shift;
|
|
*pr_inv = r_inv;
|
|
return r;
|
|
}
|
|
|
|
enum {
|
|
JS_RNDN, /* round to nearest, ties to even */
|
|
JS_RNDNA, /* round to nearest, ties away from zero */
|
|
JS_RNDZ,
|
|
};
|
|
|
|
static int mpb_get_bit(const mpb_t *r, int k)
|
|
{
|
|
int l;
|
|
|
|
l = (unsigned)k / LIMB_BITS;
|
|
k = k & (LIMB_BITS - 1);
|
|
if (l >= r->len)
|
|
return 0;
|
|
else
|
|
return (r->tab[l] >> k) & 1;
|
|
}
|
|
|
|
/* compute round(r / 2^shift). 'shift' can be negative */
|
|
static void mpb_shr_round(mpb_t *r, int shift, int rnd_mode)
|
|
{
|
|
int l, i;
|
|
|
|
if (shift == 0)
|
|
return;
|
|
if (shift < 0) {
|
|
shift = -shift;
|
|
l = (unsigned)shift / LIMB_BITS;
|
|
shift = shift & (LIMB_BITS - 1);
|
|
if (shift != 0) {
|
|
r->tab[r->len] = mp_shl(r->tab, r->tab, r->len, shift, 0);
|
|
r->len++;
|
|
mpb_renorm(r);
|
|
}
|
|
if (l > 0) {
|
|
for(i = r->len - 1; i >= 0; i--)
|
|
r->tab[i + l] = r->tab[i];
|
|
for(i = 0; i < l; i++)
|
|
r->tab[i] = 0;
|
|
r->len += l;
|
|
}
|
|
} else {
|
|
limb_t bit1, bit2;
|
|
int k, add_one;
|
|
|
|
switch(rnd_mode) {
|
|
default:
|
|
case JS_RNDZ:
|
|
add_one = 0;
|
|
break;
|
|
case JS_RNDN:
|
|
case JS_RNDNA:
|
|
bit1 = mpb_get_bit(r, shift - 1);
|
|
if (bit1) {
|
|
if (rnd_mode == JS_RNDNA) {
|
|
bit2 = 1;
|
|
} else {
|
|
/* bit2 = oring of all the bits after bit1 */
|
|
bit2 = 0;
|
|
if (shift >= 2) {
|
|
k = shift - 1;
|
|
l = (unsigned)k / LIMB_BITS;
|
|
k = k & (LIMB_BITS - 1);
|
|
for(i = 0; i < min_int(l, r->len); i++)
|
|
bit2 |= r->tab[i];
|
|
if (l < r->len)
|
|
bit2 |= r->tab[l] & (((limb_t)1 << k) - 1);
|
|
}
|
|
}
|
|
if (bit2) {
|
|
add_one = 1;
|
|
} else {
|
|
/* round to even */
|
|
add_one = mpb_get_bit(r, shift);
|
|
}
|
|
} else {
|
|
add_one = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
l = (unsigned)shift / LIMB_BITS;
|
|
shift = shift & (LIMB_BITS - 1);
|
|
if (l >= r->len) {
|
|
r->len = 1;
|
|
r->tab[0] = add_one;
|
|
} else {
|
|
if (l > 0) {
|
|
r->len -= l;
|
|
for(i = 0; i < r->len; i++)
|
|
r->tab[i] = r->tab[i + l];
|
|
}
|
|
if (shift != 0) {
|
|
mp_shr(r->tab, r->tab, r->len, shift, 0);
|
|
mpb_renorm(r);
|
|
}
|
|
if (add_one) {
|
|
limb_t a;
|
|
a = mp_add_ui(r->tab, 1, r->len);
|
|
if (a)
|
|
r->tab[r->len++] = a;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* return -1, 0 or 1 */
|
|
static int mpb_cmp(const mpb_t *a, const mpb_t *b)
|
|
{
|
|
mp_size_t i;
|
|
if (a->len < b->len)
|
|
return -1;
|
|
else if (a->len > b->len)
|
|
return 1;
|
|
for(i = a->len - 1; i >= 0; i--) {
|
|
if (a->tab[i] != b->tab[i]) {
|
|
if (a->tab[i] < b->tab[i])
|
|
return -1;
|
|
else
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void mpb_set_u64(mpb_t *r, uint64_t m)
|
|
{
|
|
#if LIMB_BITS == 64
|
|
r->tab[0] = m;
|
|
r->len = 1;
|
|
#else
|
|
r->tab[0] = m;
|
|
r->tab[1] = m >> LIMB_BITS;
|
|
if (r->tab[1] == 0)
|
|
r->len = 1;
|
|
else
|
|
r->len = 2;
|
|
#endif
|
|
}
|
|
|
|
static uint64_t mpb_get_u64(mpb_t *r)
|
|
{
|
|
#if LIMB_BITS == 64
|
|
return r->tab[0];
|
|
#else
|
|
if (r->len == 1) {
|
|
return r->tab[0];
|
|
} else {
|
|
return r->tab[0] | ((uint64_t)r->tab[1] << LIMB_BITS);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* floor_log2() = position of the first non zero bit or -1 if zero. */
|
|
static int mpb_floor_log2(mpb_t *a)
|
|
{
|
|
limb_t v;
|
|
v = a->tab[a->len - 1];
|
|
if (v == 0)
|
|
return -1;
|
|
else
|
|
return a->len * LIMB_BITS - 1 - clz32(v);
|
|
}
|
|
|
|
#define MUL_LOG2_RADIX_BASE_LOG2 24
|
|
|
|
/* round((1 << MUL_LOG2_RADIX_BASE_LOG2)/log2(i + 2)) */
|
|
static const uint32_t mul_log2_radix_table[JS_RADIX_MAX - 1] = {
|
|
0x000000, 0xa1849d, 0x000000, 0x6e40d2,
|
|
0x6308c9, 0x5b3065, 0x000000, 0x50c24e,
|
|
0x4d104d, 0x4a0027, 0x4768ce, 0x452e54,
|
|
0x433d00, 0x418677, 0x000000, 0x3ea16b,
|
|
0x3d645a, 0x3c43c2, 0x3b3b9a, 0x3a4899,
|
|
0x39680b, 0x3897b3, 0x37d5af, 0x372069,
|
|
0x367686, 0x35d6df, 0x354072, 0x34b261,
|
|
0x342bea, 0x33ac62, 0x000000, 0x32bfd9,
|
|
0x3251dd, 0x31e8d6, 0x318465,
|
|
};
|
|
|
|
/* return floor(a / log2(radix)) for -2048 <= a <= 2047 */
|
|
static int mul_log2_radix(int a, int radix)
|
|
{
|
|
int radix_bits, mult;
|
|
|
|
if ((radix & (radix - 1)) == 0) {
|
|
/* if the radix is a power of two better to do it exactly */
|
|
radix_bits = 31 - clz32(radix);
|
|
if (a < 0)
|
|
a -= radix_bits - 1;
|
|
return a / radix_bits;
|
|
} else {
|
|
mult = mul_log2_radix_table[radix - 2];
|
|
return ((int64_t)a * mult) >> MUL_LOG2_RADIX_BASE_LOG2;
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
static void build_mul_log2_radix_table(void)
|
|
{
|
|
int base, radix, mult, col, base_log2;
|
|
|
|
base_log2 = 24;
|
|
base = 1 << base_log2;
|
|
col = 0;
|
|
for(radix = 2; radix <= 36; radix++) {
|
|
if ((radix & (radix - 1)) == 0)
|
|
mult = 0;
|
|
else
|
|
mult = lrint((double)base / log2(radix));
|
|
printf("0x%06x, ", mult);
|
|
if (++col == 4) {
|
|
printf("\n");
|
|
col = 0;
|
|
}
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
static void mul_log2_radix_test(void)
|
|
{
|
|
int radix, i, ref, r;
|
|
|
|
for(radix = 2; radix <= 36; radix++) {
|
|
for(i = -2048; i <= 2047; i++) {
|
|
ref = (int)floor((double)i / log2(radix));
|
|
r = mul_log2_radix(i, radix);
|
|
if (ref != r) {
|
|
printf("ERROR: radix=%d i=%d r=%d ref=%d\n",
|
|
radix, i, r, ref);
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
if (0)
|
|
build_mul_log2_radix_table();
|
|
}
|
|
#endif
|
|
|
|
static void u32toa_len(char *buf, uint32_t n, size_t len)
|
|
{
|
|
int digit, i;
|
|
for(i = len - 1; i >= 0; i--) {
|
|
digit = n % 10;
|
|
n = n / 10;
|
|
buf[i] = digit + '0';
|
|
}
|
|
}
|
|
|
|
/* for power of 2 radixes. len >= 1 */
|
|
static void u64toa_bin_len(char *buf, uint64_t n, unsigned int radix_bits, int len)
|
|
{
|
|
int digit, i;
|
|
unsigned int mask;
|
|
|
|
mask = (1 << radix_bits) - 1;
|
|
for(i = len - 1; i >= 0; i--) {
|
|
digit = n & mask;
|
|
n >>= radix_bits;
|
|
if (digit < 10)
|
|
digit += '0';
|
|
else
|
|
digit += 'a' - 10;
|
|
buf[i] = digit;
|
|
}
|
|
}
|
|
|
|
/* len >= 1. 2 <= radix <= 36 */
|
|
static void limb_to_a(char *buf, limb_t n, unsigned int radix, int len)
|
|
{
|
|
int digit, i;
|
|
|
|
if (radix == 10) {
|
|
/* specific case with constant divisor */
|
|
#if LIMB_BITS == 32
|
|
u32toa_len(buf, n, len);
|
|
#else
|
|
/* XXX: optimize */
|
|
for(i = len - 1; i >= 0; i--) {
|
|
digit = (limb_t)n % 10;
|
|
n = (limb_t)n / 10;
|
|
buf[i] = digit + '0';
|
|
}
|
|
#endif
|
|
} else {
|
|
for(i = len - 1; i >= 0; i--) {
|
|
digit = (limb_t)n % radix;
|
|
n = (limb_t)n / radix;
|
|
if (digit < 10)
|
|
digit += '0';
|
|
else
|
|
digit += 'a' - 10;
|
|
buf[i] = digit;
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t u32toa(char *buf, uint32_t n)
|
|
{
|
|
char buf1[10], *q;
|
|
size_t len;
|
|
|
|
q = buf1 + sizeof(buf1);
|
|
do {
|
|
*--q = n % 10 + '0';
|
|
n /= 10;
|
|
} while (n != 0);
|
|
len = buf1 + sizeof(buf1) - q;
|
|
memcpy(buf, q, len);
|
|
return len;
|
|
}
|
|
|
|
size_t i32toa(char *buf, int32_t n)
|
|
{
|
|
if (n >= 0) {
|
|
return u32toa(buf, n);
|
|
} else {
|
|
buf[0] = '-';
|
|
return u32toa(buf + 1, -(uint32_t)n) + 1;
|
|
}
|
|
}
|
|
|
|
#ifdef USE_FAST_INT
|
|
size_t u64toa(char *buf, uint64_t n)
|
|
{
|
|
if (n < 0x100000000) {
|
|
return u32toa(buf, n);
|
|
} else {
|
|
uint64_t n1;
|
|
char *q = buf;
|
|
uint32_t n2;
|
|
|
|
n1 = n / 1000000000;
|
|
n %= 1000000000;
|
|
if (n1 >= 0x100000000) {
|
|
n2 = n1 / 1000000000;
|
|
n1 = n1 % 1000000000;
|
|
/* at most two digits */
|
|
if (n2 >= 10) {
|
|
*q++ = n2 / 10 + '0';
|
|
n2 %= 10;
|
|
}
|
|
*q++ = n2 + '0';
|
|
u32toa_len(q, n1, 9);
|
|
q += 9;
|
|
} else {
|
|
q += u32toa(q, n1);
|
|
}
|
|
u32toa_len(q, n, 9);
|
|
q += 9;
|
|
return q - buf;
|
|
}
|
|
}
|
|
|
|
size_t i64toa(char *buf, int64_t n)
|
|
{
|
|
if (n >= 0) {
|
|
return u64toa(buf, n);
|
|
} else {
|
|
buf[0] = '-';
|
|
return u64toa(buf + 1, -(uint64_t)n) + 1;
|
|
}
|
|
}
|
|
|
|
/* XXX: only tested for 1 <= n < 2^53 */
|
|
size_t u64toa_radix(char *buf, uint64_t n, unsigned int radix)
|
|
{
|
|
int radix_bits, l;
|
|
if (likely(radix == 10))
|
|
return u64toa(buf, n);
|
|
if ((radix & (radix - 1)) == 0) {
|
|
radix_bits = 31 - clz32(radix);
|
|
if (n == 0)
|
|
l = 1;
|
|
else
|
|
l = (64 - clz64(n) + radix_bits - 1) / radix_bits;
|
|
u64toa_bin_len(buf, n, radix_bits, l);
|
|
return l;
|
|
} else {
|
|
char buf1[41], *q; /* maximum length for radix = 3 */
|
|
size_t len;
|
|
int digit;
|
|
q = buf1 + sizeof(buf1);
|
|
do {
|
|
digit = n % radix;
|
|
n /= radix;
|
|
if (digit < 10)
|
|
digit += '0';
|
|
else
|
|
digit += 'a' - 10;
|
|
*--q = digit;
|
|
} while (n != 0);
|
|
len = buf1 + sizeof(buf1) - q;
|
|
memcpy(buf, q, len);
|
|
return len;
|
|
}
|
|
}
|
|
|
|
size_t i64toa_radix(char *buf, int64_t n, unsigned int radix)
|
|
{
|
|
if (n >= 0) {
|
|
return u64toa_radix(buf, n, radix);
|
|
} else {
|
|
buf[0] = '-';
|
|
return u64toa_radix(buf + 1, -(uint64_t)n, radix) + 1;
|
|
}
|
|
}
|
|
#endif /* USE_FAST_INT */
|
|
|
|
static const uint8_t digits_per_limb_table[JS_RADIX_MAX - 1] = {
|
|
#if LIMB_BITS == 32
|
|
32,20,16,13,12,11,10,10, 9, 9, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
|
|
#else
|
|
64,40,32,27,24,22,21,20,19,18,17,17,16,16,16,15,15,15,14,14,14,14,13,13,13,13,13,13,13,12,12,12,12,12,12,
|
|
#endif
|
|
};
|
|
|
|
static const uint32_t radix_base_table[JS_RADIX_MAX - 1] = {
|
|
0x00000000, 0xcfd41b91, 0x00000000, 0x48c27395,
|
|
0x81bf1000, 0x75db9c97, 0x40000000, 0xcfd41b91,
|
|
0x3b9aca00, 0x8c8b6d2b, 0x19a10000, 0x309f1021,
|
|
0x57f6c100, 0x98c29b81, 0x00000000, 0x18754571,
|
|
0x247dbc80, 0x3547667b, 0x4c4b4000, 0x6b5a6e1d,
|
|
0x94ace180, 0xcaf18367, 0x0b640000, 0x0e8d4a51,
|
|
0x1269ae40, 0x17179149, 0x1cb91000, 0x23744899,
|
|
0x2b73a840, 0x34e63b41, 0x40000000, 0x4cfa3cc1,
|
|
0x5c13d840, 0x6d91b519, 0x81bf1000,
|
|
};
|
|
|
|
/* XXX: remove the table ? */
|
|
static uint8_t dtoa_max_digits_table[JS_RADIX_MAX - 1] = {
|
|
54, 35, 28, 24, 22, 20, 19, 18, 17, 17, 16, 16, 15, 15, 15, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12,
|
|
};
|
|
|
|
/* we limit the maximum number of significant digits for atod to about
|
|
128 bits of precision for non power of two bases. The only
|
|
requirement for Javascript is at least 20 digits in base 10. For
|
|
power of two bases, we do an exact rounding in all the cases. */
|
|
static uint8_t atod_max_digits_table[JS_RADIX_MAX - 1] = {
|
|
64, 80, 32, 55, 49, 45, 21, 40, 38, 37, 35, 34, 33, 32, 16, 31, 30, 30, 29, 29, 28, 28, 27, 27, 27, 26, 26, 26, 26, 25, 12, 25, 25, 24, 24,
|
|
};
|
|
|
|
/* if abs(d) >= B^max_exponent, it is an overflow */
|
|
static const int16_t max_exponent[JS_RADIX_MAX - 1] = {
|
|
1024, 647, 512, 442, 397, 365, 342, 324,
|
|
309, 297, 286, 277, 269, 263, 256, 251,
|
|
246, 242, 237, 234, 230, 227, 224, 221,
|
|
218, 216, 214, 211, 209, 207, 205, 203,
|
|
202, 200, 199,
|
|
};
|
|
|
|
/* if abs(d) <= B^min_exponent, it is an underflow */
|
|
static const int16_t min_exponent[JS_RADIX_MAX - 1] = {
|
|
-1075, -679, -538, -463, -416, -383, -359, -340,
|
|
-324, -311, -300, -291, -283, -276, -269, -263,
|
|
-258, -254, -249, -245, -242, -238, -235, -232,
|
|
-229, -227, -224, -222, -220, -217, -215, -214,
|
|
-212, -210, -208,
|
|
};
|
|
|
|
#if 0
|
|
void build_tables(void)
|
|
{
|
|
int r, j, radix, n, col, i;
|
|
|
|
/* radix_base_table */
|
|
for(radix = 2; radix <= 36; radix++) {
|
|
r = 1;
|
|
for(j = 0; j < digits_per_limb_table[radix - 2]; j++) {
|
|
r *= radix;
|
|
}
|
|
printf(" 0x%08x,", r);
|
|
if ((radix % 4) == 1)
|
|
printf("\n");
|
|
}
|
|
printf("\n");
|
|
|
|
/* dtoa_max_digits_table */
|
|
for(radix = 2; radix <= 36; radix++) {
|
|
/* Note: over estimated when the radix is a power of two */
|
|
printf(" %d,", 1 + (int)ceil(53.0 / log2(radix)));
|
|
}
|
|
printf("\n");
|
|
|
|
/* atod_max_digits_table */
|
|
for(radix = 2; radix <= 36; radix++) {
|
|
if ((radix & (radix - 1)) == 0) {
|
|
/* 64 bits is more than enough */
|
|
n = (int)floor(64.0 / log2(radix));
|
|
} else {
|
|
n = (int)floor(128.0 / log2(radix));
|
|
}
|
|
printf(" %d,", n);
|
|
}
|
|
printf("\n");
|
|
|
|
printf("static const int16_t max_exponent[JS_RADIX_MAX - 1] = {\n");
|
|
col = 0;
|
|
for(radix = 2; radix <= 36; radix++) {
|
|
printf("%5d, ", (int)ceil(1024 / log2(radix)));
|
|
if (++col == 8) {
|
|
col = 0;
|
|
printf("\n");
|
|
}
|
|
}
|
|
printf("\n};\n\n");
|
|
|
|
printf("static const int16_t min_exponent[JS_RADIX_MAX - 1] = {\n");
|
|
col = 0;
|
|
for(radix = 2; radix <= 36; radix++) {
|
|
printf("%5d, ", (int)floor(-1075 / log2(radix)));
|
|
if (++col == 8) {
|
|
col = 0;
|
|
printf("\n");
|
|
}
|
|
}
|
|
printf("\n};\n\n");
|
|
|
|
printf("static const uint32_t pow5_table[16] = {\n");
|
|
col = 0;
|
|
for(i = 2; i <= 17; i++) {
|
|
r = 1;
|
|
for(j = 0; j < i; j++) {
|
|
r *= 5;
|
|
}
|
|
printf("0x%08x, ", r);
|
|
if (++col == 4) {
|
|
col = 0;
|
|
printf("\n");
|
|
}
|
|
}
|
|
printf("\n};\n\n");
|
|
|
|
/* high part */
|
|
printf("static const uint8_t pow5h_table[4] = {\n");
|
|
col = 0;
|
|
for(i = 14; i <= 17; i++) {
|
|
uint64_t r1;
|
|
r1 = 1;
|
|
for(j = 0; j < i; j++) {
|
|
r1 *= 5;
|
|
}
|
|
printf("0x%08x, ", (uint32_t)(r1 >> 32));
|
|
if (++col == 4) {
|
|
col = 0;
|
|
printf("\n");
|
|
}
|
|
}
|
|
printf("\n};\n\n");
|
|
}
|
|
#endif
|
|
|
|
/* n_digits >= 1. 0 <= dot_pos <= n_digits. If dot_pos == n_digits,
|
|
the dot is not displayed. 'a' is modified. */
|
|
static int output_digits(char *buf,
|
|
mpb_t *a, int radix, int n_digits1,
|
|
int dot_pos)
|
|
{
|
|
int n_digits, digits_per_limb, radix_bits, n, len;
|
|
|
|
n_digits = n_digits1;
|
|
if ((radix & (radix - 1)) == 0) {
|
|
/* radix = 2^radix_bits */
|
|
radix_bits = 31 - clz32(radix);
|
|
} else {
|
|
radix_bits = 0;
|
|
}
|
|
digits_per_limb = digits_per_limb_table[radix - 2];
|
|
if (radix_bits != 0) {
|
|
for(;;) {
|
|
n = min_int(n_digits, digits_per_limb);
|
|
n_digits -= n;
|
|
u64toa_bin_len(buf + n_digits, a->tab[0], radix_bits, n);
|
|
if (n_digits == 0)
|
|
break;
|
|
mpb_shr_round(a, digits_per_limb * radix_bits, JS_RNDZ);
|
|
}
|
|
} else {
|
|
limb_t r;
|
|
while (n_digits != 0) {
|
|
n = min_int(n_digits, digits_per_limb);
|
|
n_digits -= n;
|
|
r = mp_div1(a->tab, a->tab, a->len, radix_base_table[radix - 2], 0);
|
|
mpb_renorm(a);
|
|
limb_to_a(buf + n_digits, r, radix, n);
|
|
}
|
|
}
|
|
|
|
/* add the dot */
|
|
len = n_digits1;
|
|
if (dot_pos != n_digits1) {
|
|
memmove(buf + dot_pos + 1, buf + dot_pos, n_digits1 - dot_pos);
|
|
buf[dot_pos] = '.';
|
|
len++;
|
|
}
|
|
return len;
|
|
}
|
|
|
|
/* return (a, e_offset) such that a = a * (radix1*2^radix_shift)^f *
|
|
2^-e_offset. 'f' can be negative. */
|
|
static int mul_pow(mpb_t *a, int radix1, int radix_shift, int f, BOOL is_int, int e)
|
|
{
|
|
int e_offset, d, n, n0;
|
|
|
|
e_offset = -f * radix_shift;
|
|
if (radix1 != 1) {
|
|
d = digits_per_limb_table[radix1 - 2];
|
|
if (f >= 0) {
|
|
limb_t h, b;
|
|
|
|
b = 0;
|
|
n0 = 0;
|
|
while (f != 0) {
|
|
n = min_int(f, d);
|
|
if (n != n0) {
|
|
b = pow_ui(radix1, n);
|
|
n0 = n;
|
|
}
|
|
h = mp_mul1(a->tab, a->tab, a->len, b, 0);
|
|
if (h != 0) {
|
|
a->tab[a->len++] = h;
|
|
}
|
|
f -= n;
|
|
}
|
|
} else {
|
|
int extra_bits, l, shift;
|
|
limb_t r, rem, b, b_inv;
|
|
|
|
f = -f;
|
|
l = (f + d - 1) / d; /* high bound for the number of limbs (XXX: make it better) */
|
|
e_offset += l * LIMB_BITS;
|
|
if (!is_int) {
|
|
/* at least 'e' bits are needed in the final result for rounding */
|
|
extra_bits = max_int(e - mpb_floor_log2(a), 0);
|
|
} else {
|
|
/* at least two extra bits are needed in the final result
|
|
for rounding */
|
|
extra_bits = max_int(2 + e - e_offset, 0);
|
|
}
|
|
e_offset += extra_bits;
|
|
mpb_shr_round(a, -(l * LIMB_BITS + extra_bits), JS_RNDZ);
|
|
|
|
b = 0;
|
|
b_inv = 0;
|
|
shift = 0;
|
|
n0 = 0;
|
|
rem = 0;
|
|
while (f != 0) {
|
|
n = min_int(f, d);
|
|
if (n != n0) {
|
|
b = pow_ui_inv(&b_inv, &shift, radix1, n);
|
|
n0 = n;
|
|
}
|
|
r = mp_div1norm(a->tab, a->tab, a->len, b, 0, b_inv, shift);
|
|
rem |= r;
|
|
mpb_renorm(a);
|
|
f -= n;
|
|
}
|
|
/* if the remainder is non zero, use it for rounding */
|
|
a->tab[0] |= (rem != 0);
|
|
}
|
|
}
|
|
return e_offset;
|
|
}
|
|
|
|
/* tmp1 = round(m*2^e*radix^f). 'tmp0' is a temporary storage */
|
|
static void mul_pow_round(mpb_t *tmp1, uint64_t m, int e, int radix1, int radix_shift, int f,
|
|
int rnd_mode)
|
|
{
|
|
int e_offset;
|
|
|
|
mpb_set_u64(tmp1, m);
|
|
e_offset = mul_pow(tmp1, radix1, radix_shift, f, TRUE, e);
|
|
mpb_shr_round(tmp1, -e + e_offset, rnd_mode);
|
|
}
|
|
|
|
/* return round(a*2^e_offset) rounded as a float64. 'a' is modified */
|
|
static uint64_t round_to_d(int *pe, mpb_t *a, int e_offset, int rnd_mode)
|
|
{
|
|
int e;
|
|
uint64_t m;
|
|
|
|
if (a->tab[0] == 0 && a->len == 1) {
|
|
/* zero result */
|
|
m = 0;
|
|
e = 0; /* don't care */
|
|
} else {
|
|
int prec, prec1, e_min;
|
|
e = mpb_floor_log2(a) + 1 - e_offset;
|
|
prec1 = 53;
|
|
e_min = -1021;
|
|
if (e < e_min) {
|
|
/* subnormal result or zero */
|
|
prec = prec1 - (e_min - e);
|
|
} else {
|
|
prec = prec1;
|
|
}
|
|
mpb_shr_round(a, e + e_offset - prec, rnd_mode);
|
|
m = mpb_get_u64(a);
|
|
m <<= (53 - prec);
|
|
/* mantissa overflow due to rounding */
|
|
if (m >= (uint64_t)1 << 53) {
|
|
m >>= 1;
|
|
e++;
|
|
}
|
|
}
|
|
*pe = e;
|
|
return m;
|
|
}
|
|
|
|
/* return (m, e) such that m*2^(e-53) = round(a * radix^f) with 2^52
|
|
<= m < 2^53 or m = 0.
|
|
'a' is modified. */
|
|
static uint64_t mul_pow_round_to_d(int *pe, mpb_t *a,
|
|
int radix1, int radix_shift, int f, int rnd_mode)
|
|
{
|
|
int e_offset;
|
|
|
|
e_offset = mul_pow(a, radix1, radix_shift, f, FALSE, 55);
|
|
return round_to_d(pe, a, e_offset, rnd_mode);
|
|
}
|
|
|
|
#ifdef JS_DTOA_DUMP_STATS
|
|
static int out_len_count[17];
|
|
|
|
void js_dtoa_dump_stats(void)
|
|
{
|
|
int i, sum;
|
|
sum = 0;
|
|
for(i = 0; i < 17; i++)
|
|
sum += out_len_count[i];
|
|
for(i = 0; i < 17; i++) {
|
|
printf("%2d %8d %5.2f%%\n",
|
|
i + 1, out_len_count[i], (double)out_len_count[i] / sum * 100);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* return a maximum bound of the string length. The bound depends on
|
|
'd' only if format = JS_DTOA_FORMAT_FRAC or if JS_DTOA_EXP_DISABLED
|
|
is enabled. */
|
|
int js_dtoa_max_len(double d, int radix, int n_digits, int flags)
|
|
{
|
|
int fmt = flags & JS_DTOA_FORMAT_MASK;
|
|
int n, e;
|
|
uint64_t a;
|
|
|
|
if (fmt != JS_DTOA_FORMAT_FRAC) {
|
|
if (fmt == JS_DTOA_FORMAT_FREE) {
|
|
n = dtoa_max_digits_table[radix - 2];
|
|
} else {
|
|
n = n_digits;
|
|
}
|
|
if ((flags & JS_DTOA_EXP_MASK) == JS_DTOA_EXP_DISABLED) {
|
|
/* no exponential */
|
|
a = float64_as_uint64(d);
|
|
e = (a >> 52) & 0x7ff;
|
|
if (e == 0x7ff) {
|
|
/* NaN, Infinity */
|
|
n = 0;
|
|
} else {
|
|
e -= 1023;
|
|
/* XXX: adjust */
|
|
n += 10 + abs(mul_log2_radix(e - 1, radix));
|
|
}
|
|
} else {
|
|
/* extra: sign, 1 dot and exponent "e-1000" */
|
|
n += 1 + 1 + 6;
|
|
}
|
|
} else {
|
|
a = float64_as_uint64(d);
|
|
e = (a >> 52) & 0x7ff;
|
|
if (e == 0x7ff) {
|
|
/* NaN, Infinity */
|
|
n = 0;
|
|
} else {
|
|
/* high bound for the integer part */
|
|
e -= 1023;
|
|
/* x < 2^(e + 1) */
|
|
if (e < 0) {
|
|
n = 1;
|
|
} else {
|
|
n = 2 + mul_log2_radix(e - 1, radix);
|
|
}
|
|
/* sign, extra digit, 1 dot */
|
|
n += 1 + 1 + 1 + n_digits;
|
|
}
|
|
}
|
|
return max_int(n, 9); /* also include NaN and [-]Infinity */
|
|
}
|
|
|
|
#if defined(__SANITIZE_ADDRESS__) && 0
|
|
static void *dtoa_malloc(uint64_t **pptr, size_t size)
|
|
{
|
|
return malloc(size);
|
|
}
|
|
static void dtoa_free(void *ptr)
|
|
{
|
|
free(ptr);
|
|
}
|
|
#else
|
|
static void *dtoa_malloc(uint64_t **pptr, size_t size)
|
|
{
|
|
void *ret;
|
|
ret = *pptr;
|
|
*pptr += (size + 7) / 8;
|
|
return ret;
|
|
}
|
|
|
|
static void dtoa_free(void *ptr)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/* return the length */
|
|
int js_dtoa(char *buf, double d, int radix, int n_digits, int flags,
|
|
JSDTOATempMem *tmp_mem)
|
|
{
|
|
uint64_t a, m, *mptr = tmp_mem->mem;
|
|
int e, sgn, l, E, P, i, E_max, radix1, radix_shift;
|
|
char *q;
|
|
mpb_t *tmp1, *mant_max;
|
|
int fmt = flags & JS_DTOA_FORMAT_MASK;
|
|
|
|
tmp1 = dtoa_malloc(&mptr, sizeof(mpb_t) + sizeof(limb_t) * DBIGNUM_LEN_MAX);
|
|
mant_max = dtoa_malloc(&mptr, sizeof(mpb_t) + sizeof(limb_t) * MANT_LEN_MAX);
|
|
assert((mptr - tmp_mem->mem) <= sizeof(JSDTOATempMem) / sizeof(mptr[0]));
|
|
|
|
radix_shift = ctz32(radix);
|
|
radix1 = radix >> radix_shift;
|
|
a = float64_as_uint64(d);
|
|
sgn = a >> 63;
|
|
e = (a >> 52) & 0x7ff;
|
|
m = a & (((uint64_t)1 << 52) - 1);
|
|
q = buf;
|
|
if (e == 0x7ff) {
|
|
if (m == 0) {
|
|
if (sgn)
|
|
*q++ = '-';
|
|
memcpy(q, "Infinity", 8);
|
|
q += 8;
|
|
} else {
|
|
memcpy(q, "NaN", 3);
|
|
q += 3;
|
|
}
|
|
goto done;
|
|
} else if (e == 0) {
|
|
if (m == 0) {
|
|
tmp1->len = 1;
|
|
tmp1->tab[0] = 0;
|
|
E = 1;
|
|
if (fmt == JS_DTOA_FORMAT_FREE)
|
|
P = 1;
|
|
else if (fmt == JS_DTOA_FORMAT_FRAC)
|
|
P = n_digits + 1;
|
|
else
|
|
P = n_digits;
|
|
/* "-0" is displayed as "0" if JS_DTOA_MINUS_ZERO is not present */
|
|
if (sgn && (flags & JS_DTOA_MINUS_ZERO))
|
|
*q++ = '-';
|
|
goto output;
|
|
}
|
|
/* denormal number: convert to a normal number */
|
|
l = clz64(m) - 11;
|
|
e -= l - 1;
|
|
m <<= l;
|
|
} else {
|
|
m |= (uint64_t)1 << 52;
|
|
}
|
|
if (sgn)
|
|
*q++ = '-';
|
|
/* remove the bias */
|
|
e -= 1022;
|
|
/* d = 2^(e-53)*m */
|
|
// printf("m=0x%016" PRIx64 " e=%d\n", m, e);
|
|
#ifdef USE_FAST_INT
|
|
if (fmt == JS_DTOA_FORMAT_FREE &&
|
|
e >= 1 && e <= 53 &&
|
|
(m & (((uint64_t)1 << (53 - e)) - 1)) == 0 &&
|
|
(flags & JS_DTOA_EXP_MASK) != JS_DTOA_EXP_ENABLED) {
|
|
m >>= 53 - e;
|
|
/* 'm' is never zero */
|
|
q += u64toa_radix(q, m, radix);
|
|
goto done;
|
|
}
|
|
#endif
|
|
|
|
/* this choice of E implies F=round(x*B^(P-E) is such as:
|
|
B^(P-1) <= F < 2.B^P. */
|
|
E = 1 + mul_log2_radix(e - 1, radix);
|
|
|
|
if (fmt == JS_DTOA_FORMAT_FREE) {
|
|
int P_max, E0, e1, E_found, P_found;
|
|
uint64_t m1, mant_found, mant, mant_max1;
|
|
/* P_max is guarranteed to work by construction */
|
|
P_max = dtoa_max_digits_table[radix - 2];
|
|
E0 = E;
|
|
E_found = 0;
|
|
P_found = 0;
|
|
mant_found = 0;
|
|
/* find the minimum number of digits by successive tries */
|
|
P = P_max; /* P_max is guarateed to work */
|
|
for(;;) {
|
|
/* mant_max always fits on 64 bits */
|
|
mant_max1 = pow_ui(radix, P);
|
|
/* compute the mantissa in base B */
|
|
E = E0;
|
|
for(;;) {
|
|
/* XXX: add inexact flag */
|
|
mul_pow_round(tmp1, m, e - 53, radix1, radix_shift, P - E, JS_RNDN);
|
|
mant = mpb_get_u64(tmp1);
|
|
if (mant < mant_max1)
|
|
break;
|
|
E++; /* at most one iteration is possible */
|
|
}
|
|
/* remove useless trailing zero digits */
|
|
while ((mant % radix) == 0) {
|
|
mant /= radix;
|
|
P--;
|
|
}
|
|
/* garanteed to work for P = P_max */
|
|
if (P_found == 0)
|
|
goto prec_found;
|
|
/* convert back to base 2 */
|
|
mpb_set_u64(tmp1, mant);
|
|
m1 = mul_pow_round_to_d(&e1, tmp1, radix1, radix_shift, E - P, JS_RNDN);
|
|
// printf("P=%2d: m=0x%016" PRIx64 " e=%d m1=0x%016" PRIx64 " e1=%d\n", P, m, e, m1, e1);
|
|
/* Note: (m, e) is never zero here, so the exponent for m1
|
|
= 0 does not matter */
|
|
if (m1 == m && e1 == e) {
|
|
prec_found:
|
|
P_found = P;
|
|
E_found = E;
|
|
mant_found = mant;
|
|
if (P == 1)
|
|
break;
|
|
P--; /* try lower exponent */
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
P = P_found;
|
|
E = E_found;
|
|
mpb_set_u64(tmp1, mant_found);
|
|
#ifdef JS_DTOA_DUMP_STATS
|
|
if (radix == 10) {
|
|
out_len_count[P - 1]++;
|
|
}
|
|
#endif
|
|
} else if (fmt == JS_DTOA_FORMAT_FRAC) {
|
|
int len;
|
|
|
|
assert(n_digits >= 0 && n_digits <= JS_DTOA_MAX_DIGITS);
|
|
/* P = max_int(E, 1) + n_digits; */
|
|
/* frac is rounded using RNDNA */
|
|
mul_pow_round(tmp1, m, e - 53, radix1, radix_shift, n_digits, JS_RNDNA);
|
|
|
|
/* we add one extra digit on the left and remove it if needed
|
|
to avoid testing if the result is < radix^P */
|
|
len = output_digits(q, tmp1, radix, max_int(E + 1, 1) + n_digits,
|
|
max_int(E + 1, 1));
|
|
if (q[0] == '0' && len >= 2 && q[1] != '.') {
|
|
len--;
|
|
memmove(q, q + 1, len);
|
|
}
|
|
q += len;
|
|
goto done;
|
|
} else {
|
|
int pow_shift;
|
|
assert(n_digits >= 1 && n_digits <= JS_DTOA_MAX_DIGITS);
|
|
P = n_digits;
|
|
/* mant_max = radix^P */
|
|
mant_max->len = 1;
|
|
mant_max->tab[0] = 1;
|
|
pow_shift = mul_pow(mant_max, radix1, radix_shift, P, FALSE, 0);
|
|
mpb_shr_round(mant_max, pow_shift, JS_RNDZ);
|
|
|
|
for(;;) {
|
|
/* fixed and frac are rounded using RNDNA */
|
|
mul_pow_round(tmp1, m, e - 53, radix1, radix_shift, P - E, JS_RNDNA);
|
|
if (mpb_cmp(tmp1, mant_max) < 0)
|
|
break;
|
|
E++; /* at most one iteration is possible */
|
|
}
|
|
}
|
|
output:
|
|
if (fmt == JS_DTOA_FORMAT_FIXED)
|
|
E_max = n_digits;
|
|
else
|
|
E_max = dtoa_max_digits_table[radix - 2] + 4;
|
|
if ((flags & JS_DTOA_EXP_MASK) == JS_DTOA_EXP_ENABLED ||
|
|
((flags & JS_DTOA_EXP_MASK) == JS_DTOA_EXP_AUTO && (E <= -6 || E > E_max))) {
|
|
q += output_digits(q, tmp1, radix, P, 1);
|
|
E--;
|
|
if (radix == 10) {
|
|
*q++ = 'e';
|
|
} else if (radix1 == 1 && radix_shift <= 4) {
|
|
E *= radix_shift;
|
|
*q++ = 'p';
|
|
} else {
|
|
*q++ = '@';
|
|
}
|
|
if (E < 0) {
|
|
*q++ = '-';
|
|
E = -E;
|
|
} else {
|
|
*q++ = '+';
|
|
}
|
|
q += u32toa(q, E);
|
|
} else if (E <= 0) {
|
|
*q++ = '0';
|
|
*q++ = '.';
|
|
for(i = 0; i < -E; i++)
|
|
*q++ = '0';
|
|
q += output_digits(q, tmp1, radix, P, P);
|
|
} else {
|
|
q += output_digits(q, tmp1, radix, P, min_int(P, E));
|
|
for(i = 0; i < E - P; i++)
|
|
*q++ = '0';
|
|
}
|
|
done:
|
|
*q = '\0';
|
|
dtoa_free(mant_max);
|
|
dtoa_free(tmp1);
|
|
return q - buf;
|
|
}
|
|
|
|
static inline int to_digit(int c)
|
|
{
|
|
if (c >= '0' && c <= '9')
|
|
return c - '0';
|
|
else if (c >= 'A' && c <= 'Z')
|
|
return c - 'A' + 10;
|
|
else if (c >= 'a' && c <= 'z')
|
|
return c - 'a' + 10;
|
|
else
|
|
return 36;
|
|
}
|
|
|
|
/* r = r * radix_base + a. radix_base = 0 means radix_base = 2^32 */
|
|
static void mpb_mul1_base(mpb_t *r, limb_t radix_base, limb_t a)
|
|
{
|
|
int i;
|
|
if (r->tab[0] == 0 && r->len == 1) {
|
|
r->tab[0] = a;
|
|
} else {
|
|
if (radix_base == 0) {
|
|
for(i = r->len; i >= 0; i--) {
|
|
r->tab[i + 1] = r->tab[i];
|
|
}
|
|
r->tab[0] = a;
|
|
} else {
|
|
r->tab[r->len] = mp_mul1(r->tab, r->tab, r->len,
|
|
radix_base, a);
|
|
}
|
|
r->len++;
|
|
mpb_renorm(r);
|
|
}
|
|
}
|
|
|
|
/* XXX: add fast path for small integers */
|
|
double js_atod(const char *str, const char **pnext, int radix, int flags,
|
|
JSATODTempMem *tmp_mem)
|
|
{
|
|
uint64_t *mptr = tmp_mem->mem;
|
|
const char *p, *p_start;
|
|
limb_t cur_limb, radix_base, extra_digits;
|
|
int is_neg, digit_count, limb_digit_count, digits_per_limb, sep, radix1, radix_shift;
|
|
int radix_bits, expn, e, max_digits, expn_offset, dot_pos, sig_pos, pos;
|
|
mpb_t *tmp0;
|
|
double dval;
|
|
BOOL is_bin_exp, is_zero, expn_overflow;
|
|
uint64_t m, a;
|
|
|
|
tmp0 = dtoa_malloc(&mptr, sizeof(mpb_t) + sizeof(limb_t) * DBIGNUM_LEN_MAX);
|
|
assert((mptr - tmp_mem->mem) <= sizeof(JSATODTempMem) / sizeof(mptr[0]));
|
|
/* optional separator between digits */
|
|
sep = (flags & JS_ATOD_ACCEPT_UNDERSCORES) ? '_' : 256;
|
|
|
|
p = str;
|
|
is_neg = 0;
|
|
if (p[0] == '+') {
|
|
p++;
|
|
p_start = p;
|
|
} else if (p[0] == '-') {
|
|
is_neg = 1;
|
|
p++;
|
|
p_start = p;
|
|
} else {
|
|
p_start = p;
|
|
}
|
|
|
|
if (p[0] == '0') {
|
|
if ((p[1] == 'x' || p[1] == 'X') &&
|
|
(radix == 0 || radix == 16)) {
|
|
p += 2;
|
|
radix = 16;
|
|
} else if ((p[1] == 'o' || p[1] == 'O') &&
|
|
radix == 0 && (flags & JS_ATOD_ACCEPT_BIN_OCT)) {
|
|
p += 2;
|
|
radix = 8;
|
|
} else if ((p[1] == 'b' || p[1] == 'B') &&
|
|
radix == 0 && (flags & JS_ATOD_ACCEPT_BIN_OCT)) {
|
|
p += 2;
|
|
radix = 2;
|
|
} else if ((p[1] >= '0' && p[1] <= '9') &&
|
|
radix == 0 && (flags & JS_ATOD_ACCEPT_LEGACY_OCTAL)) {
|
|
int i;
|
|
sep = 256;
|
|
for (i = 1; (p[i] >= '0' && p[i] <= '7'); i++)
|
|
continue;
|
|
if (p[i] == '8' || p[i] == '9')
|
|
goto no_prefix;
|
|
p += 1;
|
|
radix = 8;
|
|
} else {
|
|
goto no_prefix;
|
|
}
|
|
/* there must be a digit after the prefix */
|
|
if (to_digit((uint8_t)*p) >= radix)
|
|
goto fail;
|
|
no_prefix: ;
|
|
} else {
|
|
if (!(flags & JS_ATOD_INT_ONLY) && strstart(p, "Infinity", &p))
|
|
goto overflow;
|
|
}
|
|
if (radix == 0)
|
|
radix = 10;
|
|
|
|
cur_limb = 0;
|
|
expn_offset = 0;
|
|
digit_count = 0;
|
|
limb_digit_count = 0;
|
|
max_digits = atod_max_digits_table[radix - 2];
|
|
digits_per_limb = digits_per_limb_table[radix - 2];
|
|
radix_base = radix_base_table[radix - 2];
|
|
radix_shift = ctz32(radix);
|
|
radix1 = radix >> radix_shift;
|
|
if (radix1 == 1) {
|
|
/* radix = 2^radix_bits */
|
|
radix_bits = radix_shift;
|
|
} else {
|
|
radix_bits = 0;
|
|
}
|
|
tmp0->len = 1;
|
|
tmp0->tab[0] = 0;
|
|
extra_digits = 0;
|
|
pos = 0;
|
|
dot_pos = -1;
|
|
/* skip leading zeros */
|
|
for(;;) {
|
|
if (*p == '.' && (p > p_start || to_digit(p[1]) < radix) &&
|
|
!(flags & JS_ATOD_INT_ONLY)) {
|
|
if (*p == sep)
|
|
goto fail;
|
|
if (dot_pos >= 0)
|
|
break;
|
|
dot_pos = pos;
|
|
p++;
|
|
}
|
|
if (*p == sep && p > p_start && p[1] == '0')
|
|
p++;
|
|
if (*p != '0')
|
|
break;
|
|
p++;
|
|
pos++;
|
|
}
|
|
|
|
sig_pos = pos;
|
|
for(;;) {
|
|
limb_t c;
|
|
if (*p == '.' && (p > p_start || to_digit(p[1]) < radix) &&
|
|
!(flags & JS_ATOD_INT_ONLY)) {
|
|
if (*p == sep)
|
|
goto fail;
|
|
if (dot_pos >= 0)
|
|
break;
|
|
dot_pos = pos;
|
|
p++;
|
|
}
|
|
if (*p == sep && p > p_start && to_digit(p[1]) < radix)
|
|
p++;
|
|
c = to_digit(*p);
|
|
if (c >= radix)
|
|
break;
|
|
p++;
|
|
pos++;
|
|
if (digit_count < max_digits) {
|
|
/* XXX: could be faster when radix_bits != 0 */
|
|
cur_limb = cur_limb * radix + c;
|
|
limb_digit_count++;
|
|
if (limb_digit_count == digits_per_limb) {
|
|
mpb_mul1_base(tmp0, radix_base, cur_limb);
|
|
cur_limb = 0;
|
|
limb_digit_count = 0;
|
|
}
|
|
digit_count++;
|
|
} else {
|
|
extra_digits |= c;
|
|
}
|
|
}
|
|
if (limb_digit_count != 0) {
|
|
mpb_mul1_base(tmp0, pow_ui(radix, limb_digit_count), cur_limb);
|
|
}
|
|
if (digit_count == 0) {
|
|
is_zero = TRUE;
|
|
expn_offset = 0;
|
|
} else {
|
|
is_zero = FALSE;
|
|
if (dot_pos < 0)
|
|
dot_pos = pos;
|
|
expn_offset = sig_pos + digit_count - dot_pos;
|
|
}
|
|
|
|
/* Use the extra digits for rounding if the base is a power of
|
|
two. Otherwise they are just truncated. */
|
|
if (radix_bits != 0 && extra_digits != 0) {
|
|
tmp0->tab[0] |= 1;
|
|
}
|
|
|
|
/* parse the exponent, if any */
|
|
expn = 0;
|
|
expn_overflow = FALSE;
|
|
is_bin_exp = FALSE;
|
|
if (!(flags & JS_ATOD_INT_ONLY) &&
|
|
((radix == 10 && (*p == 'e' || *p == 'E')) ||
|
|
(radix != 10 && (*p == '@' ||
|
|
(radix_bits >= 1 && radix_bits <= 4 && (*p == 'p' || *p == 'P'))))) &&
|
|
p > p_start) {
|
|
BOOL exp_is_neg;
|
|
int c;
|
|
is_bin_exp = (*p == 'p' || *p == 'P');
|
|
p++;
|
|
exp_is_neg = 0;
|
|
if (*p == '+') {
|
|
p++;
|
|
} else if (*p == '-') {
|
|
exp_is_neg = 1;
|
|
p++;
|
|
}
|
|
c = to_digit(*p);
|
|
if (c >= 10)
|
|
goto fail; /* XXX: could stop before the exponent part */
|
|
expn = c;
|
|
p++;
|
|
for(;;) {
|
|
if (*p == sep && to_digit(p[1]) < 10)
|
|
p++;
|
|
c = to_digit(*p);
|
|
if (c >= 10)
|
|
break;
|
|
if (!expn_overflow) {
|
|
if (unlikely(expn > ((INT32_MAX - 2 - 9) / 10))) {
|
|
expn_overflow = TRUE;
|
|
} else {
|
|
expn = expn * 10 + c;
|
|
}
|
|
}
|
|
p++;
|
|
}
|
|
if (exp_is_neg)
|
|
expn = -expn;
|
|
/* if zero result, the exponent can be arbitrarily large */
|
|
if (!is_zero && expn_overflow) {
|
|
if (exp_is_neg)
|
|
a = 0;
|
|
else
|
|
a = (uint64_t)0x7ff << 52; /* infinity */
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
if (p == p_start)
|
|
goto fail;
|
|
|
|
if (is_zero) {
|
|
a = 0;
|
|
} else {
|
|
int expn1;
|
|
if (radix_bits != 0) {
|
|
if (!is_bin_exp)
|
|
expn *= radix_bits;
|
|
expn -= expn_offset * radix_bits;
|
|
expn1 = expn + digit_count * radix_bits;
|
|
if (expn1 >= 1024 + radix_bits)
|
|
goto overflow;
|
|
else if (expn1 <= -1075)
|
|
goto underflow;
|
|
m = round_to_d(&e, tmp0, -expn, JS_RNDN);
|
|
} else {
|
|
expn -= expn_offset;
|
|
expn1 = expn + digit_count;
|
|
if (expn1 >= max_exponent[radix - 2] + 1)
|
|
goto overflow;
|
|
else if (expn1 <= min_exponent[radix - 2])
|
|
goto underflow;
|
|
m = mul_pow_round_to_d(&e, tmp0, radix1, radix_shift, expn, JS_RNDN);
|
|
}
|
|
if (m == 0) {
|
|
underflow:
|
|
a = 0;
|
|
} else if (e > 1024) {
|
|
overflow:
|
|
/* overflow */
|
|
a = (uint64_t)0x7ff << 52;
|
|
} else if (e < -1073) {
|
|
/* underflow */
|
|
/* XXX: check rounding */
|
|
a = 0;
|
|
} else if (e < -1021) {
|
|
/* subnormal */
|
|
a = m >> (-e - 1021);
|
|
} else {
|
|
a = ((uint64_t)(e + 1022) << 52) | (m & (((uint64_t)1 << 52) - 1));
|
|
}
|
|
}
|
|
done:
|
|
a |= (uint64_t)is_neg << 63;
|
|
dval = uint64_as_float64(a);
|
|
done1:
|
|
if (pnext)
|
|
*pnext = p;
|
|
dtoa_free(tmp0);
|
|
return dval;
|
|
fail:
|
|
dval = NAN;
|
|
goto done1;
|
|
}
|